

i
i

“Esslinger” — 2023/11/30 — 19:47 — page i — #1 i
i

i
i

i
i

Learning and Experiencing
Cryptography with CrypTool

and SageMath

i
i

“Esslinger” — 2023/11/30 — 19:47 — page ii — #2 i
i

i
i

i
i

For a listing of recent titles in the Artech Computer Security Library,
turn to the back of this book.

i
i

“Esslinger” — 2023/11/30 — 19:47 — page iii — #3 i
i

i
i

i
i

Learning and Experiencing
Cryptography with CrypTool

and SageMath

Bernhard Esslinger

i
i

“Esslinger” — 2023/11/30 — 19:47 — page iv — #4 i
i

i
i

i
i

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British British Library.

ISBN 978-1-68569-017-5

Cover design by Joi Garron

Accompanying software for this book can be found at:
https://www.cryptool.org/en/documentation/ctbook.

© 2024 ARTECH HOUSE
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without permission
in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

10 9 8 7 6 5 4 3 2 1

i
i

“Esslinger” — 2023/11/30 — 19:47 — page v — #5 i
i

i
i

i
i

C H A P T E R 0C H A P T E R 0

Contents

Preface xv

Acknowledgments xix

Introduction xxi

CHAPTER 1
Ciphers and Attacks Against Them 1
1.1 Importance of Cryptology 2
1.2 Symmetric Encryption 2

1.2.1 AES 4
1.2.2 Current Status of Brute-Force Attacks on Symmetric Algorithms 4

1.3 Asymmetric Encryption 5
1.4 Hybrid Procedures 7
1.5 Kerckhoffs’ Principle 7
1.6 Key Spaces: A Theoretical and Practical View 8

1.6.1 Key Spaces of Historic Cipher Devices 8
1.6.2 Which Key Space Assumptions Should Be Used 11
1.6.3 Conclusion of Key Spaces of Historic Cipher Devices 13

1.7 Best Known Attacks on Given Ciphers 14
1.7.1 Best Known Attacks Against Classical Ciphers 15
1.7.2 Best Known Attacks Against Modern Ciphers 15

1.8 Attack Types and Security Definitions 16
1.8.1 Attack Parameters 16
1.8.2 Indistinguishability Security Definitions 20
1.8.3 Security Definitions 21

1.9 Algorithm Types and Self-Made Ciphers 24
1.9.1 Types of Algorithms 24
1.9.2 New Algorithms 24

1.10 Further References and Recommended Resources 24
1.11 AES Visualizations/Implementations 25

1.11.1 AES Animation in CTO 26
1.11.2 AES in CT2 26
1.11.3 AES with OpenSSL at the Command Line of the Operating

System 28
1.11.4 AES with OpenSSL within CTO 29

1.12 Educational Examples for Symmetric Ciphers Using SageMath 29

v

i
i

“Esslinger” — 2023/11/30 — 19:47 — page vi — #6 i
i

i
i

i
i

vi Contents

1.12.1 Mini-AES 29
1.12.2 Symmetric Ciphers for Educational Purposes 32
References 32

CHAPTER 2
Paper-and-Pencil and Precomputer Ciphers 39
2.1 Transposition Ciphers 40

2.1.1 Introductory Samples of Different Transposition Ciphers 40
2.1.2 Column and Row Transposition 42
2.1.3 Further Transposition Algorithm Ciphers 43

2.2 Substitution Ciphers 45
2.2.1 Monoalphabetic Substitution 45
2.2.2 Homophonic Substitution 50
2.2.3 Polygraphic Substitution 51
2.2.4 Polyalphabetic Substitution 53

2.3 Combining Substitution and Transposition 56
2.4 Further P&P Methods 60
2.5 Hagelin Machines as Models for Precomputer Ciphers 63

2.5.1 Overview of Early Hagelin Cipher Machines 63
2.5.2 Hagelin C-52/CX-52 Models 65
2.5.3 Hagelin Component in CT2 71
2.5.4 Recap on C(X)-52: Evolution and Influence 72

2.6 Ciphers Defined by the American Cryptogram Association 73
2.7 Examples of Open-Access Publications on Cracking Classical Ciphers 74
2.8 Examples Using SageMath 74

2.8.1 Transposition Ciphers 76
2.8.2 Substitution Ciphers 80
2.8.3 Cryptanalysis of Classical Ciphers with SageMath 91
References 94

CHAPTER 3
Historical Cryptology 97
3.1 Introduction 97
3.2 Analyzing Historical Ciphers: From Collection to Interpretation 103
3.3 Collection of Manuscripts and Creation of Metadata 106
3.4 Transcription 109

3.4.1 Manual Transcription 109
3.4.2 CTTS: Offline Tool for Manual Transcription 114
3.4.3 Automatic Transcription 115
3.4.4 The Future of Automatic Transcription 119

3.5 Cryptanalysis 120
3.5.1 Tokenization 120
3.5.2 Heuristic Algorithms for Cryptanalysis 121
3.5.3 Cost Functions 129

3.6 Contextualization and Interpretation: Historical and Philological
Analysis 131

i
i

“Esslinger” — 2023/11/30 — 19:47 — page vii — #7 i
i

i
i

i
i

Contents vii

3.6.1 Analysis of Historical Languages (Linguistic Analysis) 131
3.6.2 Historical Analysis and Different Research Approaches 132

3.7 Conclusion 134
References 135

CHAPTER 4
Prime Numbers 139
4.1 What Are Prime Numbers? 139
4.2 Prime Numbers in Mathematics 140
4.3 How Many Prime Numbers Are There? 143
4.4 The Search for Extremely Large Primes 144

4.4.1 The 20+ Largest Known Primes 144
4.4.2 Special Number Types: Mersenne Numbers and Mersenne

Primes 144
4.4.3 Challenge of the Electronic Frontier Foundation 150

4.5 Prime Number Tests 150
4.5.1 Special Properties of Primes for Tests 151
4.5.2 Pseudoprime Numbers 152

4.6 Special Types of Numbers and the Search for a Formula for Primes 155
4.6.1 Mersenne Numbers f (n) = 2n

− 1 for n Prime 156
4.6.2 Generalized Mersenne Numbers f (k, n) = k · 2n

± 1 for n Prime
and k Small Prime/Proth Numbers 156

4.6.3 Generalized Mersenne Numbers f (b, n) = bn
± 1 / The

Cunningham Project 156
4.6.4 Fermat Numbers Fn = f (n) = 22

n
+ 1 156

4.6.5 Generalized Fermat Numbers f (b, n) = b2
n
+ 1 157

4.6.6 Idea Based on Euclid’s Proof: p1 · p2 · . . . · pn + 1 158
4.6.7 As Above but −1 except +1: p1 · p2 · . . . · pn − 1 158
4.6.8 Euclid Numbers en = e0 · e1 · . . . · en−1 + 1 with n ≥ 1

and e0 := 1 158
4.6.9 f (n) = n2 + n + 41 159
4.6.10 f (n) = n2

− 79n + 1601 and Heegner Numbers 160
4.6.11 Polynomial Functions f (x) = anxn + an−1xn−1 + · · · + a1x1

+ a0 (ai ∈ Z, n ≥ 1) 161
4.6.12 Catalan’s Mersenne Conjecture 161
4.6.13 Double Mersenne Primes 162

4.7 Density and Distribution of the Primes 163
4.8 Outlook 165

4.8.1 Further Interesting Topics Regarding Prime Numbers 166
4.9 Notes about Primes 166

4.9.1 Proven Statements and Theorems about Primes 166
4.9.2 Arithmetic Prime Sequences 167
4.9.3 Unproven Statements, Conjectures, and Open Questions about

Primes 170
4.9.4 The Goldbach Conjecture 171
4.9.5 Open Questions about Twin Primes 173

i
i

“Esslinger” — 2023/11/30 — 19:47 — page viii — #8 i
i

i
i

i
i

viii Contents

4.9.6 Prime Gaps 175
4.9.7 Peculiar and Interesting Things about Primes 179

4.10 Number of Prime Numbers in Various Intervals 180
4.11 Indexing Prime Numbers: nth Prime Number 181
4.12 Orders of Magnitude and Dimensions in Reality 182
4.13 Special Values of the Binary and Decimal Systems 182
4.14 Visualization of the Quantity of Primes in Higher Ranges 184

4.14.1 The Distribution of Primes 184
4.15 Examples Using SageMath 189

4.15.1 Some Basic Functions about Primes Using SageMath 189
4.15.2 Check Primality of Integers Generated by Quadratic Functions 189
References 192

CHAPTER 5
Introduction to Elementary Number Theory with Examples 195
5.1 Mathematics and Cryptography 195
5.2 Introduction to Number Theory 196

5.2.1 Convention and Notation 197
5.3 Prime Numbers and the First Fundamental Theorem of Elementary

Number Theory 199
5.4 Divisibility, Modulus and Remainder Classes 201

5.4.1 Divisibility 201
5.4.2 The Modulo Operation: Working with Congruences 203

5.5 Calculations with Finite Sets 206
5.5.1 Laws of Modular Calculations 206
5.5.2 Patterns and Structures (Part 1) 207

5.6 Examples of Modular Calculations 207
5.6.1 Addition and Multiplication 208
5.6.2 Additive and Multiplicative Inverses 208
5.6.3 Raising to the Power 211
5.6.4 Fast Calculation of High Powers (Square and Multiply) 213
5.6.5 Roots and Logarithms 214

5.7 Groups and Modular Arithmetic in Zn and Z∗
n 215

5.7.1 Addition in a Group 215
5.7.2 Multiplication in a Group 216

5.8 Euler Function, Fermat’s Little Theorem, and Euler-Fermat 217
5.8.1 Patterns and Structures (Part 2) 217
5.8.2 The Euler Phi Function 218
5.8.3 The Theorem of Euler-Fermat 219
5.8.4 Calculation of the Multiplicative Inverse 221
5.8.5 How Many Private RSA Keys d Are There in Modulo 26 222

5.9 Multiplicative Order and Primitive Roots 224
5.10 Proof of the RSA Procedure with Euler-Fermat 229

5.10.1 Basic Idea of Public-Key Cryptography and Requirements for
Encryption Systems 229

5.10.2 How the RSA Procedure Works 230

i
i

“Esslinger” — 2023/11/30 — 19:47 — page ix — #9 i
i

i
i

i
i

Contents ix

5.10.3 Proof that RSA Fulfills Requirement 1 (Invertibility) 232
5.11 Regarding the Security of RSA Implementations 234
5.12 Regarding the Security of the RSA Algorithm 234

5.12.1 Complexity 236
5.12.2 Security Parameters Because of New Algorithms 236
5.12.3 Forecasts about Factorization of Large Integers 237
5.12.4 Status Regarding Factorization of Specific Large Numbers 238
5.12.5 Further Research Results about Factorization and Prime

Number Tests 244
5.13 Applications of Asymmetric Cryptography Using Numerical

Examples 252
5.13.1 Problem Description for Nonmathematicians 252
5.13.2 The Diffie-Hellman Key-Exchange Protocol 253

5.14 The RSA Procedure with Specific Numbers 257
5.14.1 RSA with Small Prime Numbers and with a Number

as Message 257
5.14.2 RSA with Slightly Larger Primes and a Text of

Uppercase Letters 258
5.14.3 RSA with Even Larger Primes and a Text Made up of ASCII

Characters 260
5.14.4 A Small RSA Cipher Challenge, Part 1 265
5.14.5 A Small RSA Cipher Challenge, Part 2 265

5.15 Didactic Comments on Modulo Subtraction 267
5.16 Base Representation and Base Transformation of Numbers and

Estimation of Length of Digits 268
5.16.1 b-adic Sum Representation of Positive Integers 268
5.16.2 Number of Digits to Represent a Positive Integer 269
5.16.3 Algorithm to Compute the Base Representation 270

5.17 Examples Using SageMath 272
5.17.1 Addition and Multiplication Tables Modulo m 272
5.17.2 Fast Exponentiation 273
5.17.3 Multiplicative Order 273
5.17.4 Primitive Roots 276
5.17.5 RSA Examples with SageMath 287
5.17.6 How Many Private RSA Keys d Exist within a Given

Modulo Range? 288
5.17.7 RSA Fixed Points m ∈ {1, ..., n − 1} with me = m mod n 290
References 298

CHAPTER 6
The Mathematical Ideas Behind Modern Asymmetric Cryptography 301
6.1 One-Way Functions with Trapdoor and Complexity Classes 301
6.2 Knapsack Problem as a Basis for Public-Key Procedures 303

6.2.1 Knapsack Problem 303
6.2.2 Merkle-Hellman Knapsack Encryption 304

6.3 Decomposition into Prime Factors as a Basis for Public-Key Procedures 305

i
i

“Esslinger” — 2023/11/30 — 19:47 — page x — #10 i
i

i
i

i
i

x Contents

6.3.1 The RSA Procedure 305
6.3.2 Rabin Public-Key Procedure 1979 308

6.4 The Discrete Logarithm as a Basis for Public-Key Procedures 309
6.4.1 The Discrete Logarithm in Zp 309
6.4.2 Diffie-Hellman Key Agreement 310
6.4.3 ElGamal Public-Key Encryption Procedure in Z∗

p 311
6.4.4 Generalized ElGamal Public-Key Encryption Procedure 312

6.5 The RSA Plane 314
6.5.1 Definition of the RSA Plane 314
6.5.2 Finite Planes 315
6.5.3 Lines in a Finite Plane 317
6.5.4 Lines in the RSA Plane 319
6.5.5 Alternative Choice of Representatives 321
6.5.6 Points on the Axes and Inner Points 322
6.5.7 The Action of the Map z 7→ zk 322
6.5.8 Orbits 325
6.5.9 Projections 340
6.5.10 Reflections 343
6.5.11 The Pollard p − 1 Algorithm for RSA in the 2D Model 355
6.5.12 Final Remarks about the RSA Plane 357

6.6 Outlook 358
References 358

CHAPTER 7
Hash Functions, Digital Signatures, and Public-Key Infrastructures 361
7.1 Hash Functions 361

7.1.1 Requirements for Hash Functions 361
7.1.2 Generic Collision Attacks 362
7.1.3 Attacks Against Hash Functions Drive the Standardization

Process 362
7.1.4 Attacks on Password Hashes 364

7.2 Digital Signatures 365
7.2.1 Signing the Hash Value of the Message 366

7.3 RSA Signatures 367
7.4 DSA Signatures 367
7.5 Public-Key Certification 369

7.5.1 Impersonation Attacks 369
7.5.2 X.509 Certificate 370
7.5.3 Signature Validation and Validity Models 372
References 373

CHAPTER 8
Elliptic-Curve Cryptography 375
8.1 Elliptic-Curve Cryptography: A High-Performance Substitute

for RSA? 375
8.2 The History of Elliptic Curves 377

i
i

“Esslinger” — 2023/11/30 — 19:47 — page xi — #11 i
i

i
i

i
i

Contents xi

8.3 Elliptic Curves: Mathematical Basics 378
8.3.1 Groups 378
8.3.2 Fields 379

8.4 Elliptic Curves in Cryptography 381
8.5 Operating on the Elliptic Curve 383

8.5.1 Web Programs with Animations to Add Points on an
Elliptic Curve 384

8.6 Security of Elliptic-Curve Cryptography: The ECDLP 385
8.7 Encryption and Signing with Elliptic Curves 387

8.7.1 Encryption 387
8.7.2 Signing 388
8.7.3 Signature Verification 388

8.8 Factorization Using Elliptic Curves 388
8.9 Implementing Elliptic Curves for Educational Purposes 389

8.9.1 CrypTool 389
8.9.2 SageMath 390

8.10 Patent Aspects 390
8.11 Elliptic Curves in Use 391

References 391

CHAPTER 9
Foundations of Modern Symmetric Encryption 393
9.1 Boolean Functions 394

9.1.1 Bits and Their Composition 394
9.1.2 Description of Boolean Functions 395
9.1.3 The Number of Boolean Functions 396
9.1.4 Bitblocks and Boolean Functions 397
9.1.5 Logical Expressions and Conjunctive Normal Form 398
9.1.6 Polynomial Expressions and Algebraic Normal Form 399
9.1.7 Boolean Functions of Two Variables 402
9.1.8 Boolean Maps 403
9.1.9 Linear Forms and Linear Maps 404
9.1.10 Systems of Boolean Linear Equations 406
9.1.11 The Representation of Boolean Functions and Maps 411

9.2 Block Ciphers 414
9.2.1 General Description 414
9.2.2 Algebraic Cryptanalysis 415
9.2.3 The Structure of Block Ciphers 418
9.2.4 Modes of Operation 420
9.2.5 Statistical Analyses 422
9.2.6 Security Criteria for Block Ciphers 423
9.2.7 AES 424
9.2.8 Outlook on Block Ciphers 426

9.3 Stream Ciphers 427
9.3.1 XOR Encryption 427
9.3.2 Generating the Key Stream 429

i
i

“Esslinger” — 2023/11/30 — 19:47 — page xii — #12 i
i

i
i

i
i

xii Contents

9.3.3 Pseudorandom Generators 434
9.3.4 Algebraic Attack on LFSRs 444
9.3.5 Approaches to Nonlinearity for Feedback Shift Registers 447
9.3.6 Implementation of a Nonlinear Combiner with the Class

LFSR 451
9.3.7 Design Criteria for Nonlinear Combiners 453
9.3.8 Perfect (Pseudo)Random Generators 454
9.3.9 The BBS Generator 455
9.3.10 Perfectness and the Factorization Conjecture 458
9.3.11 Examples and Practical Considerations 460
9.3.12 The Micali-Schnorr Generator 461
9.3.13 Summary and Outlook on Stream Ciphers 463

9.4 Table of SageMath Examples in This Chapter 463
References 464

CHAPTER 10
Homomorphic Ciphers 467
10.1 Origin of the Term Homomorphic 467
10.2 Decryption Function Is a Homomorphism 468
10.3 Classification of Homomorphic Methods 468
10.4 Examples of Homomorphic Pre-FHE Ciphers 469

10.4.1 Paillier Cryptosystem 469
10.4.2 Other Cryptosystems 470

10.5 Applications 471
10.6 Homomorphic Methods in CrypTool 472

10.6.1 CrypTool 2 with Paillier and DGK 472
10.6.2 JCrypTool with RSA, Paillier, and Gentry/Halevi 474
10.6.3 Poll Demo in CTO Using Homomorphic Encryption 474
References 474

CHAPTER 11
Lightweight Introduction to Lattices 477
11.1 Preliminaries 477
11.2 Equations 477
11.3 Systems of Linear Equations 480
11.4 Matrices 483
11.5 Vectors 487
11.6 Equations Revisited 491
11.7 Vector Spaces 498
11.8 Lattices 503

11.8.1 Merkle-Hellman Knapsack Cryptosystem 505
11.8.2 Lattice-Based Cryptanalysis 510

11.9 Lattices and RSA 513
11.9.1 Textbook RSA 513
11.9.2 Lattices Versus RSA 517

11.10 Lattice Basis Reduction 525

i
i

“Esslinger” — 2023/11/30 — 19:47 — page xiii — #13 i
i

i
i

i
i

Contents xiii

11.10.1 Breaking Knapsack Cryptosystems Using Lattice Basis
Reduction Algorithms 532

11.10.2 Factoring 539
11.10.3 Usage of Lattice Algorithms in Post-Quantum

Cryptography and New Developments (Eurocrypt 2019) 540
11.11 PQC Standardization 541
11.12 Screenshots and Related Plugins in the CrypTool Programs 542

11.12.1 Dialogs in CrypTool 1 (CT1) 543
11.12.2 Lattice Tutorial in CrypTool 2 (CT2) 544
11.12.3 Plugin in JCrypTool (JCT) 547
References 552

CHAPTER 12
Solving Discrete Logarithms and Factoring 555
12.1 Generic Algorithms for the Discrete Logarithm Problem in

Any Group 555
12.1.1 Pollard Rho Method 556
12.1.2 Silver-Pohlig-Hellman Algorithm 556
12.1.3 How to Measure Running Times 557
12.1.4 Insecurity in the Presence of Quantum Computers 557

12.2 Best Algorithms for Prime Fields Fp 558
12.2.1 An Introduction to Index Calculus Algorithms 559
12.2.2 The Number Field Sieve for Calculating the Dlog 560

12.3 Best Known Algorithms for Extension Fields Fpn and Recent
Advances 562
12.3.1 The Joux-Lercier Function Field Sieve 562
12.3.2 Recent Improvements for the Function Field Sieve 563
12.3.3 Quasi-Polynomial Dlog Computation of Joux et al. 564
12.3.4 Conclusions for Finite Fields of Small Characteristic 565
12.3.5 Do These Results Transfer to Other Index Calculus Type

Algorithms? 566
12.4 Best Known Algorithms for Factoring Integers 567

12.4.1 The Number Field Sieve for Factorization 567
12.4.2 Relation to the Index Calculus Algorithm for Dlogs in Fp 568
12.4.3 Integer Factorization in Practice 569
12.4.4 Relation of Key Size versus Security for Dlog in Fp and

Factoring 569
12.5 Best Known Algorithms for Elliptic Curves E 571

12.5.1 The GHS Approach for Elliptic Curves E [pn] 571
12.5.2 The Gaudry-Semaev Algorithm for Elliptic Curves E [pn] 571
12.5.3 Best Known Algorithms for Elliptic Curves E [p] Over

Prime Fields 572
12.5.4 Relation of Key Size versus Security for Elliptic Curves E [p] 573
12.5.5 How to Securely Choose Elliptic Curve Parameters 574

12.6 Possibility of Embedded Backdoors in Cryptographic Keys 575
12.7 Conclusion: Advice for Cryptographic Infrastructure 576

i
i

“Esslinger” — 2023/11/30 — 19:47 — page xiv — #14 i
i

i
i

i
i

xiv Contents

12.7.1 Suggestions for Choice of Scheme 576
12.7.2 Year 2023: Conclusion Remarks 577
References 577

CHAPTER 13
Future Use of Cryptography 581
13.1 Widely Used Schemes 581
13.2 Preparing for Tomorrow 583
13.3 New Mathematical Problems 584
13.4 New Signatures 585
13.5 Quantum Cryptography: A Way Out of the Dead End? 585
13.6 Post-Quantum Cryptography 585
13.7 Conclusion 586

References 587

APPENDIX A
Software 589
A.1 CrypTool 1 Menus 589
A.2 CrypTool 2 Templates and the WorkspaceManager 590
A.3 JCrypTool Functions 592
A.4 CrypTool-Online Functions 594

APPENDIX B
Miscellaneous 601
B.1 Movies and Fictional Literature with Relation to Cryptography 601

B.1.1 For Grownups and Teenagers 601
B.1.2 For Kids and Teenagers 612
B.1.3 Code for the Light Fiction Books 614

B.2 Recommended Spelling within the CrypTool Book 615
References 616

About the Author 617

Index 621

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 97 — #1 i
i

i
i

i
i

C H A P T E R 3C H A P T E R 3

Historical Cryptology

Historical cryptology studies (original) encrypted manuscripts, often handwritten
sources, produced in our history. These historical sources can be found in archives,
often hidden without any indexing and therefore hard to locate. Once found they
need to be digitized and turned into a machine-readable text format before they
can be deciphered with computational methods. The focus of historical cryptology
is not primarily the development of sophisticated algorithms for decipherment, but
rather the entire process of analysis of the encrypted source from collection and
digitization to transcription and decryption. The process also includes the interpre-
tation and contextualization of the message set in its historical context. There are
many challenges on the way, such as mistakes made by the scribe, errors made by
the transcriber, damaged pages, handwriting styles that are difficult to interpret,
historical languages from various time periods, and hidden underlying language of
the message. Ciphertexts vary greatly in terms of their code system and symbol sets
used with more or less distinguishable symbols. Ciphertexts can be embedded in
clearly written text, or shorter or longer sequences of cleartext can be embedded in
the ciphertext. The ciphers used mostly in historical times are substitutions (simple,
homophonic, or polyphonic), with or without nomenclatures, encoded as digits or
symbol sequences, with or without spaces.

So the circumstances are different from those in modern cryptography which
focuses on methods (algorithms) and their strengths and assumes that the algo-
rithm is applied correctly. For both historical andmodern cryptology, attack vectors
outside the algorithm are applied like implementation flaws and side-channel
attacks.

In this chapter, we give an introduction to the field of historical cryptology and
present an overview of how researchers today process historical encrypted sources.

3.1 Introduction

Historical cryptology deals with the encryption and decryption of historical, man-
ually constructed ciphers. An encrypted source usually counts as historical if it has
been produced no later than the mid-20th century. There is no exact break-even
point; however, the development of telegraphy (from the 1830s) led to more sophis-
ticated and complex mathematical methods applied to encryption requiring more
advanced cryptanalysis.

Historical cryptology involves the field of cryptography (the art and science of
code making and the encryption of messages), and the field of cryptanalysis (the
art and science of code breaking [1], i.e., the decipherment of messages without the

97

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 98 — #2 i
i

i
i

i
i

98 Historical Cryptology

key). In everyday language, the terms “cryptography” and “cryptology” are often
used interchangeably.

As in all scientific fields, historical cryptology has its own terminology. We start
the chapter by introducing the most important terms and give a brief overview of
historical ciphers and keys before we move on to the components needed to process
and decipher historical ciphers. Given that historical cryptology as a scientific field
of study is rather new, the terminology standards and the usage of the terms are
still to be established and under discussion in the historical cryptology community
(see for example [2] and [3]). We summarize the important terms in Figure 3.6 and
Table 3.1, as well as illustrate the crypto process in Figure 3.7.

A cipher (sometimes also “cypher,” which is simply the old spelling) refers to an
algorithm that describes the procedure of encryption or decryption. The encrypted
source itself is called ciphertext, though the terms “code” and “cipher” are often
not distinguished from ciphertext in everyday language. A ciphertext consists of a
sequence of symbols from a ciphertext alphabet. The ciphertext alphabet can be
the same as the plaintext alphabet (e.g., the Latin letters), but often it consists of
different symbol systems and alphabets, such as Greek letters, digits, graphic signs
(e.g., alchemical or zodiac signs), or Chinese hieroglyphs. Figure 3.1 illustrates the
variation of the symbol systems from ciphertext alphabets in three ciphertexts. The
ciphertexts are extracts taken from the Borg cipher [4], a digit-based cipher from
the National Archives of Sweden [5], and the Copiale cipher [6].

In ciphertexts, we can find regular usage of space marking word boundaries
as in the Borg cipher (see Figure 3.1) even though most of the ciphertexts from
the past use continuous script (scriptio continua) without any spaces, as shown in
the examples from the Swedish National Archives and the Copiale cipher. Word
boundaries were often removed in historical ciphers to make codebreaking more
difficult. A ciphertext might also contain additional information such as accents
and other diacritics, or punctuation marks appearing more or less systematically in
connection to symbols, as in the example of the Copiale cipher. We can also find
overwritings for corrections, underlined sequences, and unintentional ink spots in
the manuscripts.

Figure 3.1 Three examples of ciphertexts. (From: [4–6].)

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 99 — #3 i
i

i
i

i
i

3.1 Introduction 99

Apart from the ciphertext in an encrypted message, nonencrypted sequences of
texts that we call cleartext are also common. For example, the first line of the Borg
cipher in Figure 3.1 contains a cleartext “Contra dissenteriam” in Latin. Cleartext
passages bear important information about the possible underlying language(s) and
the topic of the encrypted source.

The encrypted source might also include decrypted plaintext, written on the
same page, often found above the ciphertext lines, as illustrated in Figure 3.2.

A cipher key (Figure 3.3) using a given cipher defines how to encrypt a plain-
text and how to decrypt a ciphertext. Historical cipher keys usually contain a list of
plaintext elements (letters, syllables, words, names, phrases) and the corresponding
symbol or combination of symbols taken from the ciphertext alphabet, henceforth
the code elements. Two examples of cipher keys are shown in Figures 3.3 and 3.4.

Figure 3.2 Ciphertext (underlined), cleartext (in red), and plaintext (in blue) in an encrypted
manuscript.

Figure 3.3 Cipher key: simple substitution. (Flanders, 1596 [7].)

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 100 — #4 i
i

i
i

i
i

100 Historical Cryptology

In both keys, the letters of the plaintext alphabet (A–Z) are listed horizontally in
the first line of the key tables. Moreover, underneath each plaintext letter, we can
find either one (Figure 3.3) or several ciphertext symbols (Figure 3.4), henceforth
alphabet-code elements, assigned to each plaintext letter. In Figure 3.3 these single
ciphertext letters are taken from the plaintext alphabet but in a different position. In
Figure 3.4, on the other hand, the lengths of the alphabet-code elements vary; two-
digit code elements to encode the plaintext alphabet and three-digit code elements
to encode the words. Note that the most frequently occurring plaintext alphabet
letters have four alphabet-code elements, whereas the least frequent ones received
three code elements. Adding several code elements to the frequently occurring plain-
text elements leads to an increased difficulty of decipherment and renders a cipher
homophonic.

In the columns of both keys we find a shorter or longer list of plaintext elements
(names, content, and function words) with code elements assigned to each. Such
a list as part of the key is called nomenclature, sometimes also spelled nomencla-
tor. Sometimes the entire key that contains a nomenclature (i.e., a list of plaintext
elements) is called a nomenclator. Here, we make a distinction between the vari-
ous parts of the key. The nomenclature shown in Figure 3.3 consists of roughly 100
items in which we can see code elements using a single ciphertext symbol, for exam-
ple “A” for “Royne d’Angleterre” and others with multiple ciphertext symbols,
such as “12” for “Siuille.” Here, the various types of nomenclature elements receive

Figure 3.4 Cipher key: simple and homophonic substitution. (Hungary, 1703–1711 [8].)

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 101 — #5 i
i

i
i

i
i

3.1 Introduction 101

different cipher symbol types: Personal names are encoded by capital letters, place
names by numerals, military titles by other words, and dignitaries by graphic signs.
However, this assignment is not fully consistent: “Brazil” and “Mexico” are listed
among the personal names. Such inconsistencies are not uncommon in historical
encrypted sources. In the other key in Figure 3.4, the nomenclature is larger, con-
sisting of over 400 entities. Here, we can find syllables shown as section headings
(“Ba,” “Ca,” “Da,” . . .), function and content words, and names and phrases, all
in French. The last column contains additional information about the key to give
instructions or details about the cipher.

Historical cipher keys were typically structured as tables, in which the alpha-
bet elements and the nomenclature elements were graphically clearly separated; the
former horizontally as lines and the latter vertically as columns. Content-wise,
however, the boundary is not as clear-cut; double letters, syllables, or function
words might be listed as part of the alphabet line. It is also noteworthy that the
nomenclature tables usually have a certain structure in which plaintext elements
can be ordered alphabetically (see the key in Figure 3.4) or thematically (as shown
in Figure 3.3), or in a combination where the words in the themes can be alphabeti-
cally ordered. In turn, the code elements can be grouped thematically depending
on the type of plaintext element they encode (as in Figure 3.3), and/or numer-
ically when the code elements are represented by digits. The key creators often
assigned code elements to the alphabetically or thematically listed plaintext ele-
ments in some structure. Code elements of the nomenclature list were typically
numbered consecutively in increasing or decreasing order, either vertically follow-
ing the order of the columns or horizontally, following the lines across the columns.
The construction of the nomenclature list has an impact on the cryptanalysis (deci-
pherment)—alphabetical order of the plaintext elements with increasing order of
numbers can ease cryptanalysis as higher code numbers represent words starting
with letters at the end of the alphabet.

To make cryptanalysis more difficult, operational code elements (i.e., code ele-
ments that operate either on the plaintext or on other code elements) have been used.
A commonly occurring type are nulls, which can also be named in historical cipher
keys as nullities and called by the public as “blenders”—fake code elements that
encode an empty string in the plaintext. Note that keys might also contain code ele-
ments without any given plaintext in the nomenclature table treated as placeholders
to be filled in later, which are not defined as nulls but empty code elements. Other
types of operational code elements with special function on the plaintext include
cancellation signs (also called nullifiers or deleters) that mark the removal of a cer-
tain sequence of ciphertext, and repetition signs that repeat the preceding symbol
used for the reduplication of a plaintext letter.

Historical cipher keys changed and developed over time leading to the emer-
gence of new ciphers. In fact, all the historical ciphers discussed in this chapter are
variations of the substitution cipher. The specific substitution method was entirely
determined by the key type used with it. Therefore, when we discuss the develop-
ment of the keys, we also speak about the evolution of the ciphers. The earliest
keys in Europe were based on simple substitution, in which each plaintext element
is assigned to exactly one code element represented as a ciphertext symbol. An
example of a simple substitution cipher is shown in Figure 3.3. The top two lines

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 102 — #6 i
i

i
i

i
i

102 Historical Cryptology

of this document illustrate a nice example of the Caesar cipher (see Section 2.2.1),
in which the plaintext alphabet is also used for encryption but shifted (here by 11
positions). To complicate the cryptanalysis, a nomenclature table was added, which
became the norm in Europe in the 15th century [9]. Simple substitution ciphers
were then further developed into homophonic substitution ciphers, where the same
plaintext entities—often the most frequently occurring ones, such as vowels and
some consonants—could be encrypted with different code elements, as illustrated in
Figure 3.4. The nomenclature list evolved from the 17th century and onward from
several hundred elements to thick codebooks, in which not only content words but
also grammatical categories (e.g., singular, plural; grammatical cases) or inflected
word forms (e.g., “see, sees, saw, seen” for the verb “to see”) were listed with
their own code elements [9]. In some keys, different plaintext entities could also be
assigned to the same code element, intentionally or unintentionally. Ciphers with
one code element assigned to several plaintext symbols are called polyphonic substi-
tution ciphers. Figure 3.5 illustrates such a cipher key. Here, the ciphertext symbol
“3” can be decrypted as either “A” or “s,” and the symbol “6” as either “t” or “r.”

The three types of encryptionmethods—simple, homophonic, and polyphonic—
are the most frequently occurring types in European history [9]. The interested
reader can find more details about the structure and evolution of cipher keys
throughout the centuries in Europe in [9].

In addition, not only monoalphabetic substitution ciphers have been used
throughout history. After the early modern time, polyalphabetic substitution
ciphers became common, such as the Vigenère cipher (see Section 2.2.4). In these
ciphers, the plaintext alphabet is mapped to different ciphertext alphabets—see
Section 2.2.4. Transposition ciphers (Section 2.1) are another type, in which the
letters of the plaintext are switched around in some systematic way to form the
ciphertext. In later centuries, we can also find ciphers that are actually cascades
of different ciphers that we call composed ciphers. An example of such a cipher is
the ADFGVX cipher [10], which is a combination of substitution (using a Polybius
square—see Section 2.3) and (columnar) transposition.

In recent years, by far the greatest attention worldwide for historical cryp-
tology has been given to the successful cryptanalysis of over 50 newly discovered
letters written by Mary Stuart between 1578 and 1584. George Lasry, Norbert
Biermann, and Satoshi Tomokiyo worked for over one year to transcribe, decipher,
and place these letters containing over 150,000 symbols in their proper historical
context [11]. Mary Stuart’s letters were classified under Italian letters in the French
National Library, without telling sender or recipient or the actual language used
(French). The procedure used by Mary Stuart was a difficult cipher because she
used a nomenclature with 191 different characters, which included well over 100
words in addition to the 26 letters of the alphabet, but also homophones (several
symbols representing the same letter), symbols without meaning (nulls or blenders),

Figure 3.5 Cipher key example: polyphonic substitution from the 16th century.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 103 — #7 i
i

i
i

i
i

3.2 Analyzing Historical Ciphers: From Collection to Interpretation 103

Figure 3.6 Terminology: Mapping of important terms.

Figure 3.7 The crypto process: Components of encryption and decryption of historical sources.

symbols that cancel the previous symbol (nullifier), and symbols that repeat the
previous symbol.

3.2 Analyzing Historical Ciphers: From Collection to
Interpretation

Next, we describe the components involved in the processing and analysis of
historical encrypted sources.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 104 — #8 i
i

i
i

i
i

104 Historical Cryptology

Historical ciphertexts are handwritten or printed manuscripts buried in
archives, libraries, museums, or private collections. They might be difficult to find
as they are hardly indexed as ciphers in archive or library catalogs. Only a small
but increasing percentage of the historical encrypted sources are digitized and made
available online, and even fewer are turned into a computer-readable text format.
Finding, analyzing, and deciphering encrypted manuscripts are challenging and
need various kinds of expertise. In this section, we give a bird’s-eye view on the
different steps and components involved in processing encrypted manuscripts from
collection through transcription to decipherment, as illustrated in Figure 3.9. Then
we describe each step of the process in detail in the subsequent sections.

Collecting encrypted sources requires knowledge about the whereabouts of the
documents. Once found, the documents need to be digitized, turned into images,
and described with a set of metadata according to some standard. Information can
include the sender and receiver of the documents, the time and place when the
encrypted source was produced or sent, and a description of its content. Describ-
ing historical sources in terms of metadata is as important as the content of the
document itself.

Before we can cryptanalyze a ciphertext, we usually need to transcribe it (i.e.,
turning the ciphertext image(s) into a computer-readable text format). By doing so,
we look closely at the symbol set and group the similar ciphertext symbols into
types, which helps us in the identification of the entire ciphertext alphabet. A tran-
scription is a text representing the ciphertext symbols from the image(s) symbol by
symbol and line by line. This requires interpreting the handwriting style and motion
educated guesses about the intentions of the scribe; in other words to interpret the
handwriting. The transcription needs to be thorough; all symbols, diacritics, punc-
tuation marks, and spaces must be transcribed to avoid error propagation during
decipherment.

Given a (couple of lines of) transcription we can go on with the cryptanalysis.
First, we need to segment the ciphertext into code elements and analyze the fre-
quencies and co-occurrences of the various symbol types and code elements. We
need to make educated guesses about the cipher type and about the underlying
language. Dictionaries and language models for various time periods might be of
help on the way when guessing the plaintext underneath. Once we have a decrypted
text, we interpret the plaintext, correct wrongly transcribed symbols, and adjust the
assumed key to get an appropriate and reasonable plaintext output. We might then
translate the text to one or several languages, and set the plaintext in a historical
context; what was written, by whom, to whom, and why.

Deciphering a ciphertext—albeit lots of fun—is often challenging. In the past,
many historians and people worked individually in an uncoordinated fashion on
the identification and deciphering of secret writings. Without access to automatic
methods that can accelerate the decipherment, it’s a time-consuming process. At the
same time, cryptanalysts, computer scientists, and computational linguists develop
automatic cryptanalysis algorithms to identify cipher types and to break various
ciphers without having access to real historical ciphertexts.

To coordinate the efforts of various expertise and build research infrastructure
in terms of resources and tools for historical cryptology, an international research
program was created in 2018: the DECRYPT project [12]. The aim of the project

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 105 — #9 i
i

i
i

i
i

3.2 Analyzing Historical Ciphers: From Collection to Interpretation 105

was to establish a new cross-disciplinary scientific field of historical cryptology by
bringing the expertise of the different disciplines together to digitize encrypted his-
torical documents, build a database of historical ciphers, and develop software tools
for transcription and cryptanalysis. We are not aware of any other cross-disciplinary
project in the field that takes a holistic approach from collection through transcrip-
tion to decipherment by developing open-source resources and tools for historical
cryptology in large scale. Therefore, we base this chapter largely on the experiences
and findings of the results of the cross-disciplinary cooperation in the DECRYPT
project. However, there are many relevant high-quality studies on various aspects
of historical cryptology and we will refer to the most prominent ones in the relevant
parts of the subsequent sections.

To be able to study the characteristics of historical ciphers with the ultimate
goal to decipher all cipher types from historical times, we need a large set of his-
torical sources to be collected and stored from various places and time periods.
The DECODE database [13] was created to store images of ciphertexts, encryption
keys, and information about their provenance, transcriptions, and possible decryp-
tions. The process of (semi-) automatic decryption involves, as mentioned before,
transcription by applying image recognition to automatically convert the images to
machine-readable format and a mapping of symbols to a transcription scheme. The
detection of the underlying plaintext language of the ciphertext on the basis of his-
torical text sources, the automatic identification of the cipher type, the cryptanalysis
of the ciphertext, and finally its decryption are taken care of in the cryptanaly-
sis step. The methods developed are based on a wide range of algorithms: from
classical cryptanalysis to advanced deep-learning architectures taken from artificial
intelligence. Various (neural network) models for transcription are released in the
TranscriptTool [14] (see Figure 3.8), while the algorithms for cryptanalysis have
been implemented in CrypTool 2 (CT2) [15]. CT2 is called in a command line
version on the webserver of the DECRYPT pipeline. Both tools (TranscriptTool

Figure 3.8 TranscriptTool for creating transcriptions of scanned historical manuscripts, offered as part of the
DECRYPT pipeline.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 106 — #10 i
i

i
i

i
i

106 Historical Cryptology

Figure 3.9 Overview of the DECRYPT pipeline (see https://de-crypt.org/).

and CT2) are released as open-source and are under continued development (as of
2023). The DECODE database and the two tools are included into a framework
as a pipeline for processing the historical encrypted manuscripts to allow feedback
loops and error reduction between the various steps in the pipeline. In addition
to the TranscriptTool in the pipeline on the web, there is a standalone offline tool
called CTTS. See Section 3.4.2. For ciphers that do not consist of numbers, CTTS
or TranscriptTool are currently the best choice. For numeric ciphers, Transkribus.ai
can be an alternative.

The steps for breaking a cipher need careful combination and cooperation of
experts from different fields. Computational linguists provide the database with
keys and ciphers, define transcription schemes for various symbol sets, and build
and evaluate historical language models generated from historical texts. Historical
linguists and philologists collect and analyze historical texts to develop models for
language variation and language change. Cryptanalysts develop efficient algorithms
for the cryptanalysis of various cipher types, and computer vision scientists provide
a typology of symbol transcription and models to turn images into a machine-
readable format. Historians contribute to the collection, contextualization, and
interpretation of the hidden sources. By doing so the encrypted sources can be
systematically handled, studied in large scale, and made available to the public.

The following sections describe the main parts shown in the pipeline and
highlight the challenges in each step.

3.3 Collection of Manuscripts and Creation of Metadata

A general experience of experts looking for handwritten cipher keys and encrypted
documents is that they are easy to recognize but hard to find (see Section 3.2).
It is easy to recognize the keys because they have a typical structure: A plaintext
alphabet and a ciphertext alphabet are written next to each other, often followed

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 107 — #11 i
i

i
i

i
i

3.3 Collection of Manuscripts and Creation of Metadata 107

by a nomenclature table where words and corresponding code elements are listed.
A typical historical key usually looks like a short note on a piece of paper (if it is a
monoalphabetic cipher) or a large table on one or two approximately A4-measure
pages. They are either separate sheets or part of an extensive collection, with pages
in a book entirely dedicated to cipher keys. The encrypted documents are usually
easy to recognize because they are text-like documents partially or entirely com-
posed of numbers, letters, or graphic signs, often separated by dots. Even though
sometimes inventories are mistaken for encrypted documents, and there might be
some uncertainty about whether a text is encrypted or written in an unknown
writing system or language, most of the time these documents are recognized with-
out any problem. They might be only a few words, a paragraph-long ciphertext
in an otherwise readable message, or a several-page (even a book-length) entirely
encrypted document.

However, it is not easy to find the encrypted sources. Cipher keys and encrypted
documents are found in two different places: in the archives and the manuscript
collections of libraries. Imagine that a crypto-history expert pays a visit in a for-
eign country wishing to study that area’s cryptology. Such a research trip should
be thoroughly prepared because entering an archive and asking for cipher keys
without any preparation rarely leads to success. This preparation includes consult-
ing the secondary literature using that specific manuscript collection and writing
directly to the archivists/librarians. Asking for advice from historians dealing with
the period (but not necessarily with encrypted documents) might also be of con-
siderable help. The importance of personal contacts is not to be underestimated.
Finally, precious input can also arrive from blog authors, including the portal
about the Voynich manuscript by René Zandbergen [16], Nick Pelling’s Cipher
Mysteries [17], or Klaus Schmeh’s science blog [18] with a wide range of encrypted
sources.

Manuscript collections in libraries usually have proper catalogs, but the refer-
ence materials of archives do not always specify that a given source is encrypted.
Even when thoroughly cataloged, their description is rarely on document-level; they
remain more frequently on a higher collection level, and thus individual documents
remain invisible. Archives usually have boxes with a lot of documents in them.
Often, the box is described (e.g., political documents from this or that war), but
the individual letters, or documents, are not described one by one. However, even
in those rare cases when the indexes list each individual record, a further problem
arises: which search word to look for? “encrypted,” “cipher,” “in cifra” (or ciffra),
“enchiffré,” “crypté,” and “chiffriert” are certainly good choices, but following
the results of “en chiffre” in the Bibliothèque Nationale de Paris might be problem-
atic, because one gets thousands of documents, the description of which involves
“number” (chiffre).

Usually, it is easier to find the keys because they are often stored together in
thematic collections. The twomost frequent cases are (1) a whole handwritten book
(either in a library or an archive) in which cipher keys are copied, contains one key
per page, and (2) a folder (usually in an archive) stores separate sheets of various
sizes, one key being on each sheet. Catalogs and reference books usually mention
such collections. However, when an individual key occurs somewhere alone, it is
hardly mentioned and can only be found by chance.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 108 — #12 i
i

i
i

i
i

108 Historical Cryptology

Encrypted documents are harder to find because the catalogs (of the libraries)
and the reference books (of the archives) often do not specify in the indices that they
are entirely or partially encrypted. In such cases, the crypto historian can ask for
diplomatic or military correspondences of a specific period in general. Diplomatic
letters (particularly ambassadors’ letters and intelligence reports) and military mes-
sages will include encrypted messages with high probability. Even family collections
(the kind of sources that make up a large portion of the totality of archival collec-
tions) might also contain encrypted documents, not to mention personal diaries and
scientific and religious books. There is no systematic way to find them; one has to
ask for whole folders and leaf them through. According to the conjecture of a crypto
historian, one percent of the archival material is partly or entirely encrypted [19].

There is also a problem of matching the encrypted document with the corre-
sponding key. Even if the collectors found both, it is not evident that they recognize
the relationship between the two. This task gets harder as the collections grow. It is
tough to index the records in a way that corresponding sources become identifiable.

Once crypto historians find cipher keys and encrypted documents, they face
several further difficulties. First, the attached metadata might not be correct. The
collections are dated, and the origins of the sources are also indicated in the archival
folders; however, this information is usually too broad, and the documents and the
keys are not dated separately. Some of the records contain dates and names, and
in those cases when these are not later additions (by 19th-century archivists and
librarians, for example) but historical data, they are reliable. In other cases, they
are not always trustworthy, or just contain information that is too unspecific.

Describing a manuscript in terms of its location, structure, origin, and content
is invaluable for research. Such descriptions are called metadata, which help us to
interpret the manuscript. The more robust and detailed the description is the more
accurate analysis we can carry out. Metadata of historical encrypted sources might
include—albeit not limited to—information about:

1. The current location of the manuscript (index number in the archive/library,
place, city, country).

2. The origin of the document including information about the place and dat-
ing, the sender and the receiver of the source, or the creator and/or the user
of the cipher key.

3. The content of the document including its type (e.g., a ciphertext, a cipher
key, or a manual about cryptology), and the language(s) involved.

4. Additional information might describe the symbol set of the ciphertext
alphabet (e.g., digits, alphabets, graphic signs), the cipher type (sim-
ple, homophonic, or polyphonic substitution), the nature of nomenclature
elements, or instructions.

Unfortunately, such metadata for encrypted sources is difficult to find in the
archives and libraries, as they are hardly indexed and only a few know about their
whereabouts. As a result of this—hardly operationalizable—process several online
collections are available that also offer digital scans. Besides the blog authors already
mentioned, Satoshi Tomokiyo’s private homepage Cryptiana [20] contains original
ciphers and keys from the 15th to the 20th centuries and also helpful material on the

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 109 — #13 i
i

i
i

i
i

3.4 Transcription 109

cryptanalysis of historical ciphers. EugenAntal andPavolZajac’sPortal ofHistorical
Ciphers [21]hosts a yet small but growingdatabaseoforiginal historical ciphers from
the 17th up to the 20th century focusing on Central-European encrypted sources
released with a nice graphical interface. And finally, being part of the DECRYPT
project, the DECODE database [13] is the largest source for historical ciphers and
keys today.At the timeofwriting (November2023), thedatabasecontainsover7,000
historicalencryptedsources, all storedwiththeiroriginal image(s)andannotatedwith
metadata along with related documents such as transcriptions.

All collections of encrypted sources face two difficulties, one legal and one
technical. First, the owner of the given records (let them be archives or libraries)
usually does not allow making public high-resolution images in the online collec-
tion for copyright reasons. Thus, often only a low-resolution reproduction can be
shared with the public. Second, visual recognition software requires good quality
high-resolution (at least 300 DPI) copies. However, there has been considerable
improvement in this second field, and thus sufficiently readable documents can be
offered to the transcription tool, the next phase of the pipeline.

3.4 Transcription

Once collected, the images of the encrypted source must be turned into some
computer-readable text format needed for the cryptanalysis part of the process. The
digitization involves the conversion of the ciphertext as well as cleartext and/or
plaintext passages appearing in the manuscript into a text representation. This
means in particular that the symbols of the ciphertext in the images are replaced
by machine-readable symbols and the cleartext and plaintext sequences are inter-
preted and transcribed. There are different methods and approaches how this can
be done. In the following, we focus on the transcription of ciphertext and describe
two methods: a manual option and a semiautomatic option. While the manual
option relies entirely on human effort, the semiautomatic option uses computer-
vision technology based on artificial intelligence (AI) methods followed by manual
postcorrection of the AI output. We show the challenges with both methods and
discuss their advantages and disadvantages in the last section.

3.4.1 Manual Transcription

Transcribing a historical source, especially those that are handwritten in a for-
eign language, is far from easy and needs trained eyes and hands. Here, the main
challenges, standards, and current practices are summarized when transcribing
encrypted sources.

The aim of the transcription is to convert the text appearing in the image into a
text representation. The transcription of the historical document should be as accu-
rate as possible. This concerns of course the delimitation of the distinct ciphertext
symbols and the identification of the symbol types that appear in the manuscript.
Sometimes it is an easy task if the ciphertext alphabet consists of a limited, known
set of symbols such as digits. Oftentimes, the encrypted sources also contain other
symbols such as dots, punctuation marks, accents and other diacritic signs, or
underlined sequences.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 110 — #14 i
i

i
i

i
i

110 Historical Cryptology

Handwriting styles vary across individuals, and some writing is more clear than
others. But it also changed across time periods and geographic areas. However, for
these script types scholar descriptions can be found in handbooks of paleography.
Script models in tables can serve as support. Also, abbreviations commonly used in
historical texts changed over time.

Manual transcription of historical texts in general and probably historical
ciphertexts in particular is laborious and time-consuming. It requires a high level
of concentration and despite all efforts it is prone to inconsistencies and mistakes.
In addition, the personnel needed causes expenses.

Even if the transcription should be as accurate as possible, the transcriber has
to make decisions with regard to how detailed a transcription should be. In general,
we can differentiate between two different levels of granularity. Either we transcribe
very close to the historical writing and represent all word boundaries, all punctu-
ation, all line and page breaks, and give spelling and abbreviations exactly as they
appear in the original text (diplomatic transcription), or we modernize for instance
punctuation and spelling, correct obvious mistakes, and dissolve abbreviations to
help the modern reader (normalized transcription).

For historical ciphertext, we apply a high degree of granularity and aim to
capture as many details as possible, for instance spacing, diacritics, and punctuation
marks (i.e., everything that might be of relevance to be able to recover the plaintext).
In the DECRYPT project, diplomatic transcription is applied.

One of the first tasks of the transcription process is to identify and segment each
symbol in the ciphertext. Sometimes it is straightforward, as in the case of the clearly
segmented digit-based cipher or the eclectic collection of symbols in the Copiale
cipher, shown in Figure 3.1. Sometimes symbol segmentation is rather difficult,
especially when the scribe used connected handwriting style with touching sym-
bols, as in the case of the Borg cipher in Figure 3.1. To segment symbols correctly,
it is helpful to look at highly similar symbols as they occur in the manuscript, espe-
cially in connection to other symbols to see where the symbol boundaries should be
drawn. Spaces as shown in the original should not be left out from the observation.
Spaces in ciphertexts can be intentional, often marking symbol boundaries and also
word boundaries from the plaintext. However, spaces are sometimes just added to
make decipherment harder. Spaces can also be unintentional where the scribe hap-
pened to put a space during writing that actually can reveal an actual word bound-
ary in the plaintext. Therefore, spaces should be carefully observed and transcribed.

At the same time or as a next step, it is natural to group the similar symbols
into a type and assign a unique letter or symbol to each symbol type to be used for
transcription. The main difficulty at this step lies in the definition of a group. How
similar shall the symbols be in order to be clustered into one group? Should a, a.,
á, à, å, and ä be one or several groups? How many? Investigating what types of
symbols the ciphertext alphabet consists of and how frequent specific symbols are
and in what context of other symbols (n-grams) they appear in can be of help. For
example, if we can find some digits (1–3), then it is probable that we can find all
digits (0–9). Similarly, if we can find some zodiac symbols, we can expect to find
more of them, or even all 12. If a symbol with a dot appears only in one or a few
cases, the dot could be an ink spot; but if it appears and is used systematically, it
should be treated as a symbol type.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 111 — #15 i
i

i
i

i
i

3.4 Transcription 111

A big challenge for the transcription of ciphertexts is with eclectic symbol sets
using a large variation of graphic signs; see examples of the Borg and Copiale
ciphers in Figure 3.1. Many symbols look similar making it unclear whether we
have to do with two distinct cipher symbols or the same symbol with some graphic
variation due to the handwriting. For example, the zodiac signs ` and b (UTF-8
char: U+264D and U+264F, respectively), look similar at the first sight but if we
are familiar with zodiac signs, we can easily distinguish between the two. Human
creativity many times invented their own signs with tiny differences between some
symbol types, representing different plaintext entities. The challenge of identifying
the unique ciphertext alphabet can often be only solved together with the following
decipherment process.

To be able to study ciphers and compare them over time and across geographic
areas, it is an advantage to have a transcription standard for encrypted sources so
that the same symbol types are transcribed similarly across ciphertexts as well as
cipher keys. A standardized transcription of all encrypted sources allows match-
ing of ciphertexts with their corresponding key, which makes both decryption and
historical contextualization more straightforward.

Within the DECRYPT project, transcription guidelines were developed; see [22]
and [23]. The guidelines deal with the systematic transcription of ciphertext images,
cipher-key images, and cleartext images.

The basic principle of the transcription is to transcribe the manuscript as close
to the original as possible with a special attention directed on the ciphertext itself.
Each line is transcribed symbol by symbol with line breaks, spaces, punctuation
marks (periods, commas, question marks), diacritics, and underlined sequences
marked. Symbols are represented in Unicode using the UTF-8 encoding scheme
[24]. Uncertain symbols are transcribed with the guessed symbol followed by a
question mark. Unknown letters are marked with an asterisk (*). Figure 3.10 shows

Figure 3.10 Transcription of the Borg cipher [4] represented as Unicode names, converted to Unicode codes,
and visualized as original symbols.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 112 — #16 i
i

i
i

i
i

112 Historical Cryptology

a transcription of the Borg cipher with its eclectic symbol set using Unicode names
that can be automatically converted to the actual Unicode codes, and finally repre-
sented graphically as icons. It is up to the transcriber’s preference to use the Unicode
names, which are easier to memorize, or to transcribe graphic signs directly as Uni-
code codes. Either way, using the keyboard for digits, punctuation marks, and the
Latin letters is always preferable for faster progress.

To make the process of decipherment easier, transcription does not always keep
to the original image. Instead, the transcription in some cases needs to reflect the
intention of the encoder. This means that corrections in the manuscript are tran-
scribed as was presumably intended by the scribe. For example, notes in the margin
denoting corrections are transcribed and added to the place as indicated by the given
mark in the original, as illustrated in Figure 3.11. Crossed-off symbols in the orig-
inal are not transcribed but should be added as a comment in the metadata of the
transcription file.

Like ciphertexts, cipher keys are transcribed using UTF-8 encoding. However,
since cipher keys can be structured in many ways, we do some generalization in the
representation of the layout. We separate the plaintext and the code elements onto
two sides (different columns), showing this by adding “code” or “plaintext.” Each
pair is written in a separate line. In cases where several code elements (in the case of
homophonic ciphers) or plaintext elements (in the case of polyphonic ciphers) are
listed, the alternative elements are transcribed sequentially separated by a bar (“|”),
followed by “ – ” and the plaintext unit(s), regardless of whether the alternatives
are written on several lines in the original or not. Special functions in keys (called
“operational code elements” in Table 3.1) are also transcribed. A transcription of
the cipher key in Figure 3.5 is illustrated in Table 3.2.

The transcription of cleartexts and plaintexts also should represent the original
text shown in the image. To be able to distinguish between ciphertext and cleartext
sequences, the latter is marked in brackets with a description of the language, as
〈 CLEARTEXT LANG-ID Letter_sequence 〉. The language ID is a two-letter code
defined by ISO 639-1. In addition, catchwords (i.e., a sequence of symbols antici-
pated as the first symbol(s) of the following page, served to mark page order), are
written in brackets. These are marked as 〈 CATCHWORD Symbol_sequence 〉.

Some documents are damaged and the readability of cipher symbols and other
text passages are therefore limited. In these cases, a transcriber marks insecurities
in the transcription with a question mark or an asterisk for missing elements. The
type of material damage causing the insecurity is described in the metadata, which
should be part of the transcription file, and/or as a comment in the transcription.
A similar problem might occur when the image quality provided by the archive or
library is too poor. Problems caused by low resolution can to some extent be solved

Figure 3.11 Transcribing margin notes.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 113 — #17 i
i

i
i

i
i

3.4 Transcription 113

Table 3.1 Important Terms and Definitions in This Book

Plaintext The text (or message) intended for encryption and/or the decrypted text.
Cleartext Intentionally unencrypted text in an encrypted document.
Ciphertext The encrypted text.
Encryption The process of transforming a plaintext into a ciphertext using a given key.
Decryption The process of transforming a ciphertext into a plaintext using a given key.
Cipher A set of rules (algorithm) describing the process of encryption/decryption.
Key A piece of information needed for encryption and decryption. A key has to be

kept secret for security.
Nomenclature A part of the key with a list of linguistic entities, such as syllables, words,

phrases, or sentences, with their corresponding code elements. Thus, it con-
tains both the nomenclature elements and nomenclature-code elements.

Cryptanalysis
(decipherment/
code-breaking)

The process of analyzing a ciphertext without knowing or only partially know-
ing a key to reveal the original plaintext (and maybe also the key). Some authors
emphasize with decipherment that the cryptanalysis process was successful.

Plaintext alphabet Set of elements used in the plaintext, for example, letters, digits, punctuation
marks, spaces.

Ciphertext
alphabet

The set of symbols used in the ciphertext (e.g., digits, Latin and Greek letters,
alchemical, or zodiac signs). We find these symbols not only in the ciphertext
but also in the manuscript containing the key.

Plaintext elements All types of plaintext entities that have corresponding code elements assigned
to them. They usually represent letters, syllables, names, function (e.g., preposi-
tions) and content (e.g., nouns, verbs) words, as well as phrases. The plaintext
elements include the alphabet elements and the nomenclature elements.

Alphabet elements Constitute a subset of plaintext elements. All letters in the alphabet of the writing
system that have corresponding code elements assigned to them.

Nomenclature
elements

Constitute a subset of plaintext elements. These are above the alphabet level. It
may include syllables, names, function and content words, as well as phrases.

Code elements A symbol or a concatenation of symbols of the ciphertext alphabet used for
substitution of the plaintext elements or to indicate that an operation on the
revealed plaintext is needed. We distinguish between three types of code ele-
ments: alphabet-code elements, nomenclature-code elements, and operational
code elements.

Alphabet-code
elements

Code elements used for encryption of the alphabet elements.

Nomenclature-code
elements

Code elements used for encryption of the nomenclature elements. Nomenclature
elements are often encrypted using a different symbol type or of a different length
than used for the alphabet-code elements.

Operational code
elements

Elements with a special function to carry out an operation on the revealed plain-
text. Examples are repetition signs to repeat the preceding letter and cancellation
signs (i.e., special code elements that mark the removal of a certain sequence of
ciphertext).

Nulls/nullities A subset of the operational code elements that represent an empty string in
the plaintext. Their purpose is to confuse the codebreaker or to mark the start
and/or the end of the nomenclature elements.

Code separator/
token separator

A symbol or a concatenation of symbols that separates code elements or groups
of code elements from each other. The main intention is to help the receiver to
tokenize the ciphertext. In the case of cryptanalysis, it can help to break the
cipher more easily.

thanks to methods developed in computer vision science to increase the image
quality.

Automatic methods for transcription developed within image processing in
general and handwritten text recognition in particular, as parts of one of the sci-
entific fields of artificial intelligence called computer vision, will be the topic of
Section 3.4.3.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 114 — #18 i
i

i
i

i
i

114 Historical Cryptology

Table 3.2 Transcription of the
Key in Figure 3.5

Code – Plaintexts
3 – A | s
6 – t | r
5 – n | o
8 – ι | m
9 – l | u
7 – c | e
0 – p | d
02 – b | z
04 – f | g
00 – & | con

3.4.2 CTTS: Offline Tool for Manual Transcription

To support the time-consuming human labor of manual transcription, George Lasry
developed a transcription tool called CrypTool Transcriber and Solver (CTTS). The
tool can be executed on Windows, macOS, and Linux, and be downloaded through
CrypTool.1

CTTS is designed for efficient manual transcription of historical ciphertexts.
It also includes a solver for homophonic substitution ciphers. CTTS encourages a
cyclic process of review and iteratively editing of transcriptions and decryptions.
It provides multidocument support so that users can work on several documents
using the same symbol sets simultaneously. CTTS allows to store and load transcrip-
tion projects and export both the transcribed ciphertexts as well as the decrypted
plaintexts.

The nonpublic predecessor version of CTTS was successfully used to crack sev-
eral real manuscripts (like theMary Stuart ciphers [11] and the Armand de Bourbon
cipher [25]), leading to several publications in Cryptologia or at HistoCrypt.

Ciphertexts in historical documents often contain graphic symbols, letters,
or digits. The manual process of transcribing such a document with CTTS is as
follows:

Step 1: The user loads an image file containing the ciphertext.

Step 2: The user uses the mouse to frame each ciphertext symbol with a box and
associates the ciphertext symbols with each other. This is what is described
above as grouping the similar symbols.

Step 3: The program generates a transcribed text. In a scenario for a 26-letter
alphabet and a simple substitution cipher, it consists of a maximum of 26
clusters of ciphertext letters. Clearly, homophonic substitution ciphers will
have many more than 26 clusters, plus additional clusters for punctuation
marks, spaces, and other types of delimiters.

Step 4: The usermay optionally apply a built-in cryptanalysis algorithm (simulated
annealing) on the (so-far) transcribed text to cryptanalyze the cipher and
reveal the plaintext.

1. https://www.cryptool.org/en/ctts.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 115 — #19 i
i

i
i

i
i

3.4 Transcription 115

Steps 2 through 4 are performed iteratively in a loop to improve transcription
and decryption.

Figure 3.12 shows a screenshot of the tool. In the upper right section of the
application, a historical encrypted document has been loaded and manually tran-
scribed. Each of the graphical ciphertext symbols is enclosed by a user-drawn box.
Boxes of the same color are used to mark ciphertext symbols belonging to the same
cluster of symbols. The left side of the application displays a list of all the symbols
transcribed so far. Additionally, transcription assignments can be seen; for instance,
the first symbol of the list, a 90-degree-rotated letter T, is transcribed as “02.” Next
to the “02” there is a letter “E,” which is the assigned plaintext symbol. Users can
manually assign plaintext symbols or an automatic cryptanalysis algorithm can be
executed to try and find the best assignments using simulated annealing.

At the bottom of the application, all symbols of the currently selected cluster
are visible. Here, all ciphertext symbols transcribed as “02” are grouped in this
cluster. This allows users to see which symbols share the same transcription symbol
and identify transcription errors. Users can easily correct errors by dragging and
dropping incorrectly assigned symbols into a different cluster.

Figure 3.13 shows how the result of step 4 (cryptanalysis) is included into the
CTTS GUI again.

3.4.3 Automatic Transcription

Computer vision is the discipline of computer science that makes machines see.
In artificial vision, the eyes are the cameras, formed by a matrix of light sensors.
These sensors convert the intensity of the light that reaches them into numerical
values, generating digital images. But these matrices of points (i.e., pixels), need
their brains: computer programs that can associate the sets of pixels with con-
cepts, according to their shape, color, layout, and so forth. In particular, document

Figure 3.12 Ciphertext transcribed with the program CrypTool Transcriber and Solver.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 116 — #20 i
i

i
i

i
i

116 Historical Cryptology

Figure 3.13 Ciphertext cryptanalyzed with the program CrypTool Transcriber and Solver.

analysis addresses the problem of automatically recognizing document content
being it printed text, handwritten text, or graphic elements. Traditionally, optical
character recognition (OCR) programs recognize clusters of pixels as letters and, at
a higher level, validate joint interpretations to end up transforming a digital image
into an editable text file. Despite advances during the last decades, reading sys-
tems still have limitations, and document analysis research must advance to offer
large-scale solutions. In the case of historical handwritten documents, the different
handwriting styles, the paper degradation, or the use of ancient languages makes
the recognition difficult. Moreover, the use of unknown alphabets, which is com-
monly the case in such encrypted sources, makes its automatic transcription even
more challenging. For this reason, recognition methods must be guided by human
experts, and, once the transcription is provided, it must be validated to correct any
transcription errors.

Typically, the stages when recognizing text include preprocessing, layout seg-
mentation, and transcription. Given that labeled data (transcribed data) is often not
available, the recognition methods are divided into learning-free and learning-based
techniques. Next, the main stages of automatic transcription are described.

3.4.3.1 Document Preprocessing

The processing of the image includes those techniques that are usually applied
after the digitization of the document. These techniques are essentially applied for
improving the quality of the images to make the document more readable, both for
people and also for automatic reading systems. In the case of very old and poorly
preserved documents, it is necessary to apply document enhancement techniques
for minimizing show-through or bleed-through effects, paper discoloration, or loss
of ink intensity. Although many document enhancement methods can be directly
applied to any input document image, recent deep learning-based methods, such as

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 117 — #21 i
i

i
i

i
i

3.4 Transcription 117

generative adversarial networks and transformer networks [26] have demonstrated
a superior performance. They need similar (labeled) data to train such systems for a
good performance. An example of a document enhancement, which includes bina-
rization, is shown in Figure 3.14. Binarization here means converting a color or
grayscale image into a binary image with only black and white pixels.

3.4.3.2 Layout Segmentation

Once the document has been preprocessed and enhanced, the central area of the page
must be identified within the image. Layout analysis methods aim to identify the
structure and nature of the regionswithin the document.Many historical documents
contain heterogeneous contents, such as text, drawings, or music scores. In the case
of ciphertexts, this stage is usually focused on detecting the blocks of text and sep-
arating them into lines, words, and ideally, into characters/symbols [27]. However,
in many manuscripts, symbols are touching or even overlapping, which makes the
segmentation at symbol level difficult, as shown in Figure 3.15 (see the bounding
boxes in red color). In such cases, it is preferable to opt for learning-based models.

3.4.3.3 Text/Cipher Recognition

Once the structure of the document has been analyzed and the text regions,
lines, and/or symbols have been extracted, these are processed to obtain the final

Figure 3.14 Example of a document enhancement method (binarization).

Figure 3.15 Example of symbol segmentation and transcription; segmentation shown in red, transcription
in blue.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 118 — #22 i
i

i
i

i
i

118 Historical Cryptology

transcription. Most commercial OCR software only focuses on typewritten text,
which means that these programs expect the same visual appearance for each char-
acter in the alphabet (e.g., every ‘a’ looks exactly the same, at pixel level). However,
in the case of handwritten documents, the high variability of handwriting styles
requires more sophisticated and flexible techniques.

Handwritten text recognition (HTR) methods [28] have been designed for this
purpose, which tend to transcribe at line level, avoiding the segmentation into
characters that is so prone to errors. Current HTR methods use deep learning-
based architectures, such as long short-term memory recurrent neural networks
(LMRNN), convolutional neural networks (CNN), sequence-to-sequence models
(S2S), and transformer networks (TN) [29]. In these systems, the input is usually
a text line and the output is the transcribed text. These deep learning-based meth-
ods have very good performance, but they require a lot of labeled data to train
(more than 100 pages) to learn the shape or visual appearance of each charac-
ter. But this need for providing examples of text images with their corresponding
transcriptions can be a problem in the case of uncommon or unknown alphabets,
such as the ones used in many historical encrypted documents. When there is few
annotated data to train, the performance of deep learning models dramatically
decreases.

For this reason, some researchers opt for learning-free transcription methods,
such as learning-free spotting for cuneiform2 [30] or unsupervised clustering for
cipher alphabets like in [31], where the system segments symbols in the document
and then groups them according to their visual appearance, using, for example,
k-means clustering and label propagation. K-means clustering is an unsupervised
method used in machine learning for grouping data into clusters (or groups). It
consists in partitioning the elements into k clusters (or groups) so that each element
belongs to the cluster with the nearest mean (cluster centers, or prototype of the
cluster). Label propagation iteratively propagates the label of each cluster center
or prototype through the rest of the nearest elements. The process finishes when
all elements are assigned to a cluster, with a label. Then, each cluster corresponds
to a particular symbol in the alphabet. Learning-free methods are very flexible and
can be applied to any alphabet, but their performance is moderate compared to
learning-based approaches, especially when alphabets contain very similar symbols
or when characters are difficult to segment, as shown in Figure 3.15.

Lately, different strategies have been explored to deal with the lack of labeled
data to train, including few-shot learning, semisupervised and self-supervised learn-
ing, transfer learning, and domain adaptation. Few-shot learning aims to mimic
how humans learn novel concepts and adapt to unseen data. Concretely, few-shot
learning can learn with limited data and the classes (i.e., alphabet symbols) for
training and testing can differ. This is especially useful for recognizing manuscripts
with rare scripts, unknown alphabets, or very different handwriting styles with-
out retraining the whole model. Rare scripts are those alphabets that are not
commonly used today (like Egyptian hieroglyphs, cuneiform, runes, or cipher
alphabets). For example, a transcription method based on few-shot learning could

2. Cuneiform is a logosyllabic script used to write several languages of the ancient Near East (from around
3500 BC).

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 119 — #23 i
i

i
i

i
i

3.5 Cryptanalysis 119

learn how to transcribe symbols from one alphabet, and then use this knowledge
when transcribing symbols from an unseen new alphabet. Secondly, semi- and self-
supervised learning aim to learn representations from few or no labeled data, which
can transfer well to recognition tasks. These types of methods can also be combined
with few-shot learning. For example, in [32] a few-shot learning method incremen-
tally transcribes the symbols with a higher confidence rate (namely pseudolabels),
assuming that their labels are correct, and uses these pseudolabels as training data
for the next iterations, as shown in Figure 3.16. It must be noted that all these types
of approaches require only a few annotated examples compared to standard deep
learningmethods, while reaching a performance only slightly below the typical deep
learning-based ones.

3.4.4 The Future of Automatic Transcription

When comparing the manual transcription versus the automatic transcription, it is
obvious that, in general, the use of automatic transcription methods are preferable
because they minimize the human effort (see Section 3.4.1).

Automatic transcription decreases time-consumption significantly, especially
for larger documents. However, for an automatic transcription, the user is required
at the beginning to provide labeled data for learning-based methods, and at the end
to validate the transcriptions and correct any possible errors. Besides, even though
this manual postcorrection can be facilitated since the mistakes by automatic tran-
scriptions are systematic, it requires time. For this reason, a manual transcription
can be preferable for transcribing short manuscripts (a few pages). For anything
else, the automatic transcription plus manual postcorrection is preferable: In this
scenario, semi-interactive software tools are desired, so that the user can guide the
automatic transcription (following the idea ofAI in the loop), and benefit from intu-
itive graphical user interfaces for the postcorrection. The reader can find a deeper
discussion about manual versus automatic transcription in [33].

The field of computer vision develops quickly, as do other branches of AI, and
sooner or later we will have access to tools that not only can produce a reliable
transcription but also decipher the encrypted manuscript in one step.

Next, we will turn to methods to analyze and decipher encrypted sources.

Figure 3.16 Example of incremental transcription by pseudolabeling. At each iteration, themethod
transcribes the symbols with higher confidence. Each color corresponds to one label. (From: [32].
Reprinted with permission.)

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 120 — #24 i
i

i
i

i
i

120 Historical Cryptology

3.5 Cryptanalysis

Historical ciphers can be attacked automatically using a computer with heuristic
methods like hill climbing. In the previous sections, we presented the different
ways in which historical ciphers were built based on alphabet-code elements and
nomenclature-code elements. While the alphabet-code elements can be recovered
using properties of the original plaintext by methods such as counting frequencies
of unigrams, bigrams, and trigrams, as these still show through the encryption,
the nomenclature elements cannot really be recovered by automatic cryptanaly-
sis. This is because nomenclature-code elements do not appear as regularly or
as frequently as alphabet-code elements do. Nomenclature-code elements can be
deciphered either by having access to the original key showing the correspond-
ing plaintext element, or by linguistic and/or historical analysis through contextual
interpretation. Contextual analysis (see Section 3.6) might involve the investigation
of the surrounding words to reveal the linguistic type in terms of part-of-speech of
the plaintext element (e.g., preposition, proper noun, common noun, verb), and/or
historical analysis of the entire text tomake educated guesses about probable certain
persons or places mentioned in the underlying plaintext.

For cryptanalysis, the cipher type and the cipher alphabet used to encrypt the
plaintext have to be determined. In the previous sections we showed that, for
example, letters, graphic signs, digits, or a combination of them were used as
alphabet-code elements. One recognizes only after the decipherment whether, for
example, two symbols transcribed together into the same cluster (e.g., A and Ä,
whereby one overlooked the points of the Ä) are actually two different symbols,
that should have been transcribed differently.

While individual alphabet-code elements with graphic symbols and alphabet
symbols are easily distinguishable (mostly, one symbol corresponds to one alphabet-
code element), digit-based ciphers are often challenging to segment. Only a few
digit-based ciphertexts have visible separations of the code elements (e.g., spaces,
a comma, or a dot). Many ciphertexts use scriptio continua with a consecutive
sequence of digits without any separation between them (see Section 3.1). Here,
tokenization needs to be applied to cut the digit sequences into code elements and
identify them, which is far from straightforward as the length of codes can vary
within a single ciphertext (e.g., two-digit and three-digit code, or a combination of
them).

In the subsequent sections, first we describe the tokenization of ciphertexts.
Then, we present two algorithms using heuristics—namely hill climbing and sim-
ulated annealing—for the automatic recovery of alphabet-code elements from the
transcribed text. Finally, we discuss cost and fitness functions as well as language
models used during cryptanalysis.

3.5.1 Tokenization

Tokenization in the context of historical ciphers is defined as the separation of
ciphertext into single code elements, be it alphabet or nomenclature codes. Tok-
enization can be straightforward if the code elements are clearly segmented from
each other by separators like a space. Tokenizing a ciphertext that consists of

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 121 — #25 i
i

i
i

i
i

3.5 Cryptanalysis 121

graphic symbols (e.g., alchemical or zodiac symbols) is often also easy as each sym-
bol being regarded as one token (i.e., one alphabet-code element). However, the
tokenization of graphic ciphers sometimes has to be refined or corrected during the
cryptanalysis because the creator of a transcription of a ciphertext falsely regarded
two symbols as one token.

In contrast, tokenizing digit-based ciphers that are written in a continuous
script (scriptio continua), without segmentation between the code elements, is chal-
lenging. So far, no solution has been found that allows the generally automated
tokenization of such ciphertexts. At the time of writing, tokenizers need to be
developed and adapted to individual ciphertexts.

Before attempting to develop a new tokenizer, we can start by applying the
most trivial one—tokenizing the ciphertext into two-digit alphabet-code elements,
which occur commonly in early modern ciphers. We can also apply already exist-
ing tokenizers developed for particular sets of ciphers originating from the same
source to new ciphertext of the same collection, such as the papal ciphers from the
Vatican or diplomatic correspondence between two sources. If the abovementioned
alternatives do not lead to a correctly tokenized ciphertext, a new tokenizer has
to be developed. To do so, the ciphers and the corresponding ciphertexts have to
be statistically analyzed to find a set of rules the tokenizer is based on. Counting
and analyzing unigram, bigram, and trigram frequencies of single digits, two-digit
codes, three-digit-codes, and so forth are normally performed. Analysis contains
to discover various structures in the code system. For example, if we see that the
digit “2” is always in front of an odd digit, it may indicate that the combinations
“21,” “23,” “25,” “27,” and “29” are valid tokens and may represent alphabet-
code elements. In the end, one has to manually look for such peculiarities in the
frequencies. The tokenizer can then be applied to the ciphertext and its output be
run by the cryptanalysis algorithm(s) of choice (e.g., CT2) to recover the key. If
cryptanalysis fails, the tokenizer is probably incorrect and needs adjustment. In the
end, the process of tokenization of the ciphertext and the development of a valid
tokenizer is a trial-and-error but inevitable process for successful cryptanalysis.

3.5.2 Heuristic Algorithms for Cryptanalysis

A basic flaw (and our advantage) of all simple and homophonic substitution ciphers
is the fact that a partially correct key may already allow us to read the content of
an encrypted text. Also, text frequencies of the original plaintext may be still visible
in the encrypted text. For example the most frequent ciphertext letter in a simple
substitution cipher or the most frequent homophone in a homophonic substitution
cipher most likely encrypts the most frequent letter. In case of the English lan-
guage, this would be the letter “E.” Both these properties—the ability to have partial
correct keys and the appearance of plaintext frequencies in the ciphertext—allow
using heuristic algorithms to incrementally solve such ciphertexts. In the follow-
ing, the two most used and most successful algorithms to break these ciphers are
presented. Even though we focus here on the aforementioned two types of substi-
tution ciphers, the algorithms shown can be applied to many other pen-and-paper
ciphers as well as to rotor encryption machines. The heuristic algorithms have to
be adapted specifically for each cipher.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 122 — #26 i
i

i
i

i
i

122 Historical Cryptology

3.5.2.1 Hill Climbing

The main goal of a hill-climbing algorithm is to find a solution of a search prob-
lem that cannot be solved by means of an exhaustive search (i.e., brute force). For
example, a simple substitution cipher with 26 ciphertext letters has a total key space
(search space) with 26! elements, which are about 288.4 ≈ 4 ∗ 1026 = four hun-
dred octillion different keys. Finding the correct key by testing all possible keys
to decrypt the ciphertext is impossible in practice. With hill climbing, the search
is possible in practice, but in some cases, for example, very short ciphertexts or
poorly transcribed ciphertexts, it might not find the correct key. However, luck-
ily the vast majority of simple monoalphabetically encrypted ciphertexts can be
deciphered easily.

The basic hill-climbing algorithm for finding the correct key kc of a ciphertext
ct encrypted with the simple substitution cipher consists of five steps:

1. Select a randomly chosen start key k

2. Decrypt the ciphertext ct to get pt := decrypt(ct, k)

3. Compute the cost value of pt with f := cost(pt)

4. Loop while a defined termination criteria is not met:

a. Generate a new key k′ which is a slightly modified k

b. Decrypt the ciphertext ct to get pt ′ := decrypt(ct, k′)

c. Compute the cost value of pt ′ with f ′ := cost(pt ′)

d. if f ′ > f then assign f := f ′ and assign k := k′

5. Output the key k (which most likely is the correct key kc)

The five steps of the hill-climbing algorithm can be clustered into two parts: The
first part is the initialization, which is steps (1) to (3). It first generates a random
start key and rates its “cost” using a cost (or fitness) function. The higher the cost
value, the closer the decrypted plaintext is to real text. In the second part, the
algorithm incrementally improves the key. To do so, it generates in step (4a) a
slightly modified key, which it then rates in step (4c) using the same cost function
as in the initialization part. When the cost value is higher than the previous one it
keeps the new cost value as well as the new key. The algorithm loops as long as
a defined termination criterion is not met. Finally, in step (5) it outputs the key k,
which is with high probability the correct key kc.

The algorithm can be visualized in a two-dimensional graph as shown in
Figure 3.17. Here, the keys are drawn at the x-axis, and the corresponding cost
values at the y-axis. The hill-climbing algorithm follows the cost function to find
the global maximum (= the key kc). The figure shows a potential problem of the
hill-climbing algorithm, namely local maxima where the algorithm might get stuck
(sitting stick figure). Later in this section, we will discuss how to mitigate the effects
of local maxima on the success rate of cryptanalysis. Also, keep in mind that while
the algorithm can be nicely drawn in a two-dimensional manner, the real problem
is a multidimensional problem with, for example, 26 dimensions in the case of the
simple substitution cipher with a 26-letter alphabet.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 123 — #27 i
i

i
i

i
i

3.5 Cryptanalysis 123

Figure 3.17 A visualization of the hill-climbing algorithm.

In the following, we discuss different aspects and design ideas of the hill-
climbing algorithm to break simple substitution ciphers.

Decrypt function and key representation. For the simple substitution cipher, our
decryption function requires both the ciphertext and a key as input. The key is
represented by a string or array of characters with the same length as the plain-
text alphabet. For example, the key “WDNBZCJHOKQRPEISFTUGVXYALM”
means that the “W” is decrypted to “A,” the “D” is decrypted to “B,” ..., and the
“M” is decrypted to “Z.” The actual decryption is performed by walking letter
by letter through the ciphertext and replacing the ciphertext letters with plaintext
letters as described before.

Start key. The generation of the start key can be crucial for the success of a hill-
climbing algorithm. For some ciphers, a “good” start key is needed to allow the
algorithm to converge to the correct solution. With the simple substitution cipher,
the start key can just be chosen at random. To do so, we take the alphabet of
the assumed plaintext language (e.g., the Latin 26-letter alphabet for the English
language) and create a key by shuffling it:

ABCDEFGHIJKLMNOPQRSTUVWXYZ → WDNBZCJHOKQRPEISFTUGVXYALM

With historical encrypted manuscripts, the used alphabet can differ from the alpha-
bet we use today. Some letters may be represented by the same single letter (e.g.,
“I”=“J” and “U”=“V”). This depends on the plaintext language and the time of
the creation of the manuscript. Sometimes, letters may be intentionally omitted for
security purposes, such as by writing a single “L” instead of “LL” or “VV” instead
of “W.” Sometimes, the alphabets are extended, for example, by adding a symbol
for double letters (“LL”), “SCH,” or letters with diacritics (“á”). This all has to
be taken into account when generating an alphabet and keys with an automated
heuristic-based analyzer.

Cost function. The cost or fitness function evaluates the quality (cost or fitness
value) of a supposedly decrypted plaintext. Depending on the problem (the cipher),
a special cost function may have to be implemented. For the simple substitution

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 124 — #28 i
i

i
i

i
i

124 Historical Cryptology

cipher, a language model (n-gram statistics; n being between 3 and 5) is used. In
Section 3.5.3 we discuss cost and fitness functions in more detail.

Key modification. The next important part of the hill-climbing algorithm is how
to modify the key k to obtain a new key k′ during a single iteration. Only a small
change in the key allows the algorithm to smoothly follow the curvature of the
graph of the cost function to potentially reach its global maximum.

Figure 3.18 shows how the key k is modified to create a new key k′ during hill
climbing by swapping only two letters (here “C” and “F”) at the same time. There
are different strategies how to choose which two letters should be swapped:

1. Perform a single random swap: In every iteration of the hill-climbing algo-
rithm, use two random indices i and j with i 6= j . The two letters at position
i and j are swapped. Clearly, only “good” swaps are kept and “bad” swaps
are discarded.

2. Take only the “best” swap: In every iteration of the hill-climbing algorithm,
all indices i and j with i 6= j are tested. The “best” swap of all possible
letter swaps is kept. The “best” swap of all possible swaps is the “good”
swap, that increases the cost value the most.

3. Take all “good” swaps: In every iteration of the hill-climbing algorithm, all
indices i and j with i 6= j are tested. Every time a “good” swap occurs,
the swap is kept. This means, that during a test of all indices i and j in an
iteration, multiple consecutive “good” swaps may occur.

The classical hill-climbing algorithm as described in the literature uses random
swaps of two letters—the strategy (1) above. While this works well in most cases,
the two other strategies may improve the success rate as well and reduce the com-
putational time needed by the cryptanalysis algorithm. With strategy (2), we test
all possible swaps and only take the “best” possible “good” swap. A “good” swap
increases the current best cost value while a “bad” swap leads to the same or even
a worse cost value. With a 26-letter alphabet, there are 26·25

2 = 325 different swaps
that need to be tested in every iteration. Clearly, this slows down the algorithm
and increases the needed computation time in the worst case by a factor of 325.
To mitigate the effect of testing all possible two-letter-swaps, there is strategy (3)
that allows already to keep a “good” swap while all remaining swaps still need to
be tested. For example, the Vigenère analyzer component of CT2 uses strategy (3),
which allows solving really short Vigenère ciphertexts with high success rate in very
short times [34].

Termination criteria. In theory, a hill-climbing algorithm should terminate, when
it reaches the global maximum (success) or it got stuck in a local maximum (fail).

Figure 3.18 Swapping two letters of key k to obtain a modified key k′.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 125 — #29 i
i

i
i

i
i

3.5 Cryptanalysis 125

Depending on the selected key-modification strategy, it is possible to detect if the
algorithm got stuck or not. For example, with random swaps, it is possible that
it by chance never selects a new swap that allows us to increase the cost value,
despite there exists another “good” swap. Thus, a suitable termination criterion
for random swaps is to count the number of consecutive randomly chosen “bad”
swaps and then terminate when a specific number of “bad” consecutively chosen
swaps is met. With the two other strategies, (2) and (3), we can actually find out if
the algorithm got stuck because in every iteration all possible swaps are tested. If
all of these swaps are “bad” swaps, the algorithm terminates.

Strategies to counter getting stuck. There are different strategies to counter getting
stuck with hill climbing in a local maximum:

1. Better start keys. With some ciphers, it is possible to already generate
“good” start keys that are close to the global maximum. In the case of
the simple substitution cipher, this is not needed, since any randomly cre-
ated start key can be used and will lead to the correct solution in nearly all
cases. In contrast, with homophonic substitution ciphers, a good start key
improves the success rate and performance of the algorithm. We describe
this later in Section 3.5.2.2.

2. Better key modification(s). For example, instead of swapping only two ele-
ments of the key at the same time, one could perform a triple swap, where
element i becomes j , j becomes k, and k becomes i while i 6= j 6= k. With
the simple substitution cipher and with the homophonic substitution cipher,
swapping only two letters at the same time is good enough.

3. Better cost function. When hill climbing does not find the correct key, it
is probably a good idea to change the cost function. For example, instead
of using n-gram models with n = 2, we could increase the dimension of the
languagemodel to n = 3. With simple and homophonic substitution ciphers,
n = 5 works very well. Sometimes, it can also be useful to change to a lower
n, especially with bad transcriptions or many errors in the ciphertext. See
Section 3.5.3.

4. Shotgun hill climbing/random restarts. Another idea of improving the algo-
rithm is to restart it several times (e.g., 100 times) with different randomly
chosen start keys. This is also referred to as shotgun hill climbing, since the
start keys are distributed over the key space like shotgun shrapnels. With
the simple substitution cipher, this strategy is very effective.

5. Use of simulated annealing. This algorithm is an alternative to hill climbing.
See Section 3.5.2.2.

When working on a historical ciphertext, all the aforementioned improvements
have usually to be tested individually. For example, evaluations with different key
modifications and cost functions have to be performed to test the impact of the
changes on the cryptanalysis success rates. For CT2, the implemented cryptanaly-
sis algorithms were tested and tweaked with millions of artificially generated test
records until sufficient success rates were achieved. Additionally, all CT2 cryptanal-
ysis components allow exchanging the languagemodel or set different parameters in

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 126 — #30 i
i

i
i

i
i

126 Historical Cryptology

the corresponding components’ settings. A few examples of such CT2 components
are the substitution analyzer, the Vigenère analyzer, the homophonic substitution
analyzer [35], and the Enigma analyzer.

Figure 3.19 shows a screenshot of the CT2 homophonic substitution analyzer3

solving an encrypted letter written by Holy Roman Emperor Maximilian II and
sent to Polish delegates in 1575. The upper part of the analyzer has some help-
ful information about the currently analyzed ciphertext, such as the number of
used homophones. The large middle part shows the analyzed ciphertext. The lower
part shows the currently revealed plaintext. Green marked symbols are already
locked, meaning they won’t change any more during the ongoing cryptanalysis.
Blue marked symbols show German words found in a predefined dictionary. A
CT2 user can stop the automatic analysis process at any time and manually change
and improve plaintext-ciphertext symbol-mappings on his own.

3.5.2.2 Simulated Annealing

Simulated annealing is a generalization of hill climbing: The basic idea is that with
a defined probability modifications of the key are also chosen, which lead to a
bad key, which means the cost value may decrease in an iteration. Over time, the
probability for selecting a bad key is reduced until it reaches zero. Then, simulated
annealing behaves exactly the same way hill climbing does.

The simulated annealing heuristic is inspired by the physical annealing in met-
allurgy. Here, annealing is a slow process of heat treatment of metals to alter the

Figure 3.19 The CT2 homophonic substitution analyzer solving an encrypted letter from Maximilian II.

3. In CT2 Startcenter F Templates F Cryptanalysis F Classical F Homophonic Substitution Analysis.
In CTO, a similar homophonic analyzer can be found.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 127 — #31 i
i

i
i

i
i

3.5 Cryptanalysis 127

physical properties of the material. While in physical annealing, the real temper-
ature is slowly decreased; with simulated annealing a virtual temperature value is
used. The basic simulated-annealing algorithm consists of six steps:

1. Select a randomly chosen start key k

2. Set the temperature to a start value t := tstart
3. Decrypt the ciphertext ct to get pt := decrypt(ct, k)

4. Compute the cost value of pt with f := cost(pt)

5. Loop while t > 0

a. Generate a new key k′, which is a slightly modified k

b. Decrypt the ciphertext ct to get pt ′ := decrypt(ct, k′)

c. Compute the cost value of pt ′ with f ′ := cost(pt ′)

d. If f ′
≥ f then assign f := f ′ and assign k := k′ else

• Compute a degradation value d := − abs(f − f ′)

• Compute an acceptance probability p = e
d
t

• Choose a random value r in the interval] 0 ; 1 [

• If p > pmin and r < p then assign f := f ′ and assign k := k′

e. Decrease temperature, for example, by using a defined step size ss to get
t := t − ss

6. Output the key k (which most likely is the correct key kc)

In step (2) a start temperature is set. The start temperature, among other new
values needed for simulated annealing, has to be tweaked for each type of cipher
and often also for each individual ciphertext, which you want to cryptanalyze. The
termination criterion in step (5) now checks if the temperature t is still higher than
0. Inside the main loop of the algorithm, when a key k′ is not accepted in step (5d),
a probability p based on the degradation value is computed and a random value r is
chosen. If r is smaller than the computed probability and the computed probability
is greater than a minimum probability pmin, the bad key is kept. In practice, we
set the minimum probability to pmin = 0.85%, which gave us good results. This
allows the simulated-annealing algorithm to jump away from local maxima. While
the algorithm is being executed, the temperature value t is reduced by a step size
ss. The value of s is predefined and can be determined, for example, by dividing
the start temperature by the number of wanted steps s, and then the algorithm
should perform. So ss := tstart

s . Other temperature reduction strategies are also
possible. For example, instead of reducing the temperature by the same value ss all
the time, it could also be reduced by a percentage value of t with t := t − 0.01 · t .
The different strategies have to be evaluated to find the best one for the specific
case. Figure 3.20 shows a simulation of the key acceptance probability of simulated
annealing over time with a fixed temperature step size and Figure 3.21 shows a
simulation of simulated annealing with a percentage-based temperature step size.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 128 — #32 i
i

i
i

i
i

128 Historical Cryptology

Figure 3.20 Key acceptance probability of simulated annealing with linear decreased temperature
over time.

Figure 3.21 Key acceptance probability of simulated annealing with percentage decreased tem-
perature over time.

Improving simulated annealing for homophonic substitution ciphers. During the
cryptanalysis of the homophonic substitution cipher, plaintext letters from the
plaintext alphabet are assigned to all homophones and the ciphertext is decrypted
for testing. During a single iteration of the simulated-annealing algorithm, we swap
the assignments of two plaintext letters. As with the simple substitution, we test all
possible two-letter swaps of all homophones.

In the following, we present some adaptions and strategies to be applied to
the simulated-annealing algorithm to improve its performance, especially for the
cryptanalysis of homophonic substitution ciphers.

1. Good start keys. With the homophonic substitution cipher, it is helpful
when the start keys for the cryptanalysis algorithm are already chosen in a

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 129 — #33 i
i

i
i

i
i

3.5 Cryptanalysis 129

way that reflects the distribution of letter frequencies of the language. For
example, it is better to assign more homophones to more frequent plaintext
letters (e.g., the “E” with English) than to less frequent letters (e.g., the “X”
with English). Therefore, the Homophonic Substitution Analyzer of CT2
allows distributing the letters among the homophones based on probabilities
that are based on the original text frequencies of the language.

2. Homophone locking (manual). When analyzing homophonic substitution
ciphers, it may improve the cryptanalysis if already correctly assigned let-
ters can be fixed by the user. The Homophonic Substitution Analyzer of CT2
allows this in the semiautomatic mode. Here, the user may pause the analysis
and lock homophones, meaning the corresponding assignment of plaintext
letters to the homophones cannot be changed anymore by the cryptanaly-
sis algorithm during the further iterations. Also, the user may change and
correct the already made assignments.

3. Homophone locking (automatic with a dictionary). Besides manually lock-
ing homophones as described above, it is possible to automatically lock
homophones based on words found in a dictionary. Therefore, the Homo-
phonic Substitution Analyzer of CT2 provides a dictionary to the cryptanal-
ysis algorithm. Every time a new global best value (best key) is found, the
analyzer searches for words with aminimum andmaximum length. If it finds
more words than a specified threshold value, it automatically locks all corre-
sponding homophones to their corresponding plaintext letters. This can also
be combined with the manual method for homophone locking described in
the second adaption.

3.5.3 Cost Functions

While optimizing a key k with hill climbing or simulated annealing, the algorithm
needs a way to decide if a modified key k′ is better or worse than the original key
k. To rate a key, we use cost or fitness functions on the text previously decrypted
with the key k′.

The basic idea of a cost function cost(t) is that it calculates a number that
reflects how natural a given text t is. The closer the text is to a real text, the higher
the cost value should be. The more random (not natural) a text is, the lower the
cost value should be. In the best case, the cost function returns the highest value
when we enter the original plaintext. Between the lowest and the highest value,
there should be a smooth curve that the cryptanalysis algorithm can follow during
the optimization of the key.

A common practice is to use a language model built from a large text corpus.
For historical ciphers, it also turned out that the cryptanalysis algorithm can benefit
from using a language model based on a historical text corpus [36]. A language
model returns the probability of a given text being a text of the language it was
built for.

The language models used in our cost functions are n-gram models. Such an
n-gram model provides a value (probability) for a given n-gram. Clearly, frequent
n-grams of the language, such as “ING” in English, return a higher n-gram value
than less frequent n-grams, such as “XYZ.” An overview of English and German

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 130 — #34 i
i

i
i

i
i

130 Historical Cryptology

language frequencies can be found in CrypTool-Online4 and a set including different
other language n-grams can be found on Practical Cryptography.5

We created different language models by using large corpora of text. To create
a model, we first count the number of occurrences of all individual n-grams (e.g.,
from “AAA” to “ZZZ” for a 3-gram model) of the set. Also, we count the total
number of all n-grams of the corpus. Then, for each individual n-gram, we divide
its number by the number of all n-grams to obtain its probability. To compute
the cost value of a given text, we could multiply all the computed values of all n-
grams of that particular text to obtain a probability (the cost value) of the text.
Here, we have two problems: (1) the probability values of each n-gram are very
small numbers, which will result in many precision errors when multiplying these
numbers on a computer, and (2) multiplications can be costly, so the performance
of the computation may be poor. On modern PCs, problem 2 is negligible, but
problem 1 is a huge problem. A common way to get rid of both problems is the
usage of logarithmic values. Instead of multiplying all small values of the language
model, we add the logarithms of each value. This is possible due to the logarithm
law logb(x · y) = logb(x) + logb(y). In the end, to obtain the final value, we could
raise the used base b to the power of the sum c, meaning bc. But this is not needed
since the optimization algorithm can also run on the logarithmic values. In CT2, the
cost values are normalized to double precision floating point values in the interval
of [0 : 10000000]. By doing so, the CT2 language models are comparable to each
other.

A final note on the data format of language models: During cryptanalysis, the
letters are mapped into an integer number space based on the used alphabet. For
example, with the 26-letter Latin alphabet, the letter “A” is represented by 0, the
letter “B” by 1, ..., and the letter “Z” is represented by 25. A language model is an
n-dimensional array. To look up, for example, the 3-gram “ABC,” which is encoded
as integers 0, 1, 2, we can just look up the language model array using the integers
as indices. Doing the encoding of letters this way is easy and fast.

The CT2 language model files have a specific binary file format:

Header:
"CTLM" 4 ASCII characters (magic number)
LanguageCode 0-terminated UTF-8 string (language code)
GramLength 4 byte integer (length of n-grams)
Alphabet 0-terminated UTF-8 string (alphabet)

Data:
(Alphabet.Length ^ GramLength) * 4 bytes (model data)

A language model file starts with the four ASCII characters “CTLM” (CrypTool
Language Model) to identify the file type. The “LanguageCode” string identifies the
language model. The “GramLength” defines the size of the n-gram model. The “Alpha-
bet” defines the used alphabet. In the data section, the actual language model data is
stored as 4-byte float values containing the logarithmic values computed using a text
corpus. The sizes of the n-gram models increase quickly with n, so the models are com-
pressed using the gzip algorithm. For the English language with 26 characters the file

4. See https://www.cryptool.org/en/cto/frequency-analysis.
5. See http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages/.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 131 — #35 i
i

i
i

i
i

3.6 Contextualization and Interpretation: Historical and Philological Analysis 131

sizes on disc are (rounded): 1-gram: 1 kB, 2-gram: 3 kB, 3-gram: 50 kB, 4-gram:
800 kB, 5-gram: 8500 kB. Decompressed in RAM (rounded on 1 kB): 1-gram: 1 kB,
2-gram: 3 kB, 3-gram: 71 kB, 4-gram: 1828 kB, 5-gram: 47526 kB. One observation
here is that the more data (texts) are used to create these language models, the smaller
the amount of file size reduction achieved by compressing the models. The reason for
this is that the increase in entropy (aka amount of information) of the data used leads
to lower compressibility.

3.6 Contextualization and Interpretation: Historical and
Philological Analysis

Once we have managed to reveal (parts of) the plaintext, we aim to set the manuscript
in a historical context to recover what was written, by whom, to whom, and why. Such
a contextualization concerns historical and philological interpretation, which will be
the topic of this section. These approaches involve a broader type of analysis than
cryptanalysis described above, because they do not primarily restitute the message,
but rather investigate the linguistic and historical context in which the message was
written, encrypted, and sent. Linguistic analysis involves the contextualization of the
given ciphertext into the contemporary language usage, which presupposes that we have
sufficient knowledge about how languages were used in the given time period and geo-
graphical area. Historical analyses do not only involves the identification of the sender
and receiver (and perhaps the code-breaker) of the ciphertext, and the political context,
but also the transfer of knowledge in the field of cryptology, as well as the social history
of those who applied this technology of secrecy.

3.6.1 Analysis of Historical Languages (Linguistic Analysis)
Historical languages pose some specific challenges to the cryptanalyst. One important
aspect is that most languages show a great deal of variation before they were standard-
ized sometime in the eighteenth century. This means, for instance, that one and the
same word could be written in many different ways (i.e., orthography was not normal-
ized and even the same scribe could use various spellings for the same word in one text
[37]). Moreover, in languages such as English, German, or Italian, we find a lot of dif-
ferent dialectal forms in the same language. Languages also change over time, certain
words or word forms disappear, new ones emerge. The pilot study [36] on the decipher-
ment of German and English historical homophonic substitution ciphertexts showed
that using 4-gram models derived from century-specific texts leads to significantly bet-
ter performance than language models built on more modern, contemporary texts for
ciphertexts produced in the 17th century or earlier. A corpus of historical texts such as
a digital library of online texts like the Project Gutenberg or the collection of histori-
cal texts with diplomatic transcriptions for 16 European languages available within the
HistCorp collection [38] can serve well as a basis for the creation of language models.

Another general aspect to bear in mind in the use of algorithms for cryptanalysis is
that in the plaintext alphabet a historical cipher is based on might differ from modern
alphabets in specific languages: In many cases, only one letter is used for both u and v,
for instance, and usually, letters with diacritics (such as ä, ö, ü in German; or á, é, í, ó́ ,
etc. in Hungarian) do not form part of plaintext alphabets. At the same time, plaintext
alphabets also might merge commonly co-occurring alphabet letters and treat these as
one plaintext element, such as ss or sch in the Copiale [6] cipher with German as its
plaintext language.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 132 — #36 i
i

i
i

i
i

132 Historical Cryptology

In historical ciphertexts, especially in the domain of diplomacy and military cor-
respondence, often more than one language was used [12]. Several languages, such as
German and Latin, could be combined in one and the same sentence, as was the case in
a letter written by a Lithuanian nobleman to the Habsburg Emperor Maximilian II in
1574 [39]. Initially, this fact caused problems in the decipherment process because the
analysis was based on a monolingual German language model and the switching was
not detected. Only afterwards, in a closer linguistic analysis, the change of language
was identified.

It is also possible that different languages were used for passages in cleartext and
passages in ciphertext [40–42], or that the plaintext language used in the key and the
language of the plaintext of the encrypted letter are not the same. For example, a
Swedish envoy based in Germany during the Thirty Years’ War used a German key
in his correspondence with the Swedish Lord High Chancellor. However, the underly-
ing plaintext in his letters is in Swedish and Latin [43]. Hence, even when the language
of cleartext passages or of a key is identified, other languages may still be encountered
in the ciphertext.

These examples show that the linguistic analysis of ciphertexts can form part of the
process of cryptanalysis and functions as an auxiliary method to solve a cipher and to
reveal information about the underlying language, the provenance, and the dating of a
ciphertext. In fact, already in the Middle Ages, codebreakers used linguistic analysis in
cryptanalysis: Arabic scholars realized that there is a certain frequency distribution of
letters in different languages—a tool they used to decipher monoalphabetic substitution
ciphers [44, 45]. Linguistic knowledge also helps to detect transcription errors and to
resolve certain decipherment problems. Finally, knowledge in historical languages is
often needed to fully understand the content of the deciphered documents.

On the other hand, linguistic analysis can serve its own purpose and be aimed
at understanding linguistic patterns and language practices in historical cryptographic
texts. Examples for this research path are, for instance, studies on what languages were
chosen in ciphers in different geographical areas and different times or which and how
different languages were combined in documents [42]. Further, the linguistic analysis
of a recovered plaintext can complement the historical analysis and contribute to the
understanding of scribal practices and language usage at chanceries and black chambers.
Historical ciphertexts can also serve as sources for the analysis of written dialects and
languages, and language change.

The linguistic analysis can be fully or partly automatized by algorithms developed
within computational linguistics and natural language processing. Spelling variation in
historical texts can be automatically discovered and normalized to a modern version,
cleartext sequences can be detected and its language(s) identified by applying automatic
language identification. The computational analysis of language heavily relies on lan-
guage models derived from large samples of diplomatic transcriptions of historical texts
from various time periods and genres. Such collections are not easy to find and their
creation requires linguistic and philological expertise.

3.6.2 Historical Analysis and Different Research Approaches
Similar to the linguistic analysis, historical analysis in historical cryptology plays a dou-
ble role: It might be the goal of the whole procedure described above, or alternatively, it
might also be a tool used in the process. It is the goal when the historian aims to recon-
struct certain past events and study a particular historical context. Solving the ciphers,
pairing the keys and the messages, and exploring the ways cryptography was used help
her in this task. In other cases, however, it is rather a tool: Most homophonic cipher

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 133 — #37 i
i

i
i

i
i

3.6 Contextualization and Interpretation: Historical and Philological Analysis 133

keys consist of an alphabet part and a nomenclature table. One needs mathematical
and linguistic knowledge to analyze the alphabet, but reconstructing the nomenclature
table requires a deep knowledge of the historical context. In this second type of case,
history is an auxiliary science of the crypto-historian.

In the following, we provide a—by no means exhaustive—typology of the differ-
ent (sometimes contradictory, sometimes complementary) approaches when historical
analysis comes to the picture, and we exemplify each approach with a corresponding
publication.

1. One typical research path aims at getting new, previously unknown knowledge
by solving a given encrypted source. This approach enriches our picture of a particular
historical period and becomes useful for traditional history writing, but the emphasis is
more on cryptanalysis, the solution of a riddle [46].

2. A second typical research path follows the agenda of political history. Ciphers
were primarily used in diplomacy. The analysis of the correspondences of political cen-
ters with their ambassadors, messengers, and spies can provide new insight into the
history of a given era even if the exchanged letters had always been readable because
the historical addressee wrote the solution above the ciphertext characters. Examples
for this category include studies on diplomatic history [47–49], analyses on the earliest
black chambers, such as codebreaking offices [50], and the reconstruction of particular
encryption practices (polyphonic and fixed length ciphers) used in the 16th century in
the Vatican [51].

3. It is not the aim but the scope of themicrohistory approach that makes it different
from the previous ones. In this case, a temporarily limited series of events (a few years
or a few exchanged letters) is analyzed with a variety of tools in order to have better
insight into one particular historical event, such as the study on encrypted letters sent
by and to the Habsburg Emperor Maximilian II in 1574–1575 [39, 52, 53].

4. The previous approachmight be enrichedwith a linguistic analysis of the sources,
as described in the previous section. The two fields have always been close: study of
languages and cryptology have walked hand in hand from the earliest times.

5. An opposite approach is followed by those who perform large-scale statistical
analyses of cipher keys and/or encrypted documents. The emphasis is not on particular
sources but on conclusions, tendencies, and correlations that can be pointed out on the
basis of relatively big data. An example for this approach are the studies on the typology
and change of early modern cipher key documents [9, 54, 55].

6. Cryptology is both a technology and a scientific endeavor neighboring mathe-
matics; thus, it is a genuine topic for a history of science approach. Basic issues include
knowledge transfer (the ways this secretive knowledge is transferred from one genera-
tion to another, from one political center to another), the relations of cryptology to other
scientific fields (statistics, algebra, poetics, etc.), its technology use, and the evolution
of encrypting and codebreaking practices over time [19].

7. A separate category is populated by articles and book-length studies on spe-
cific famous ciphers, solved or unsolved, such as the Voynich manuscript [56, 57], the
Copiale manuscript [6], the Borg cipher [4], or the Beale ciphers [58].

8. Sometimes it is not the ciphers and keys but the social background of the users
that is under study. A social history of cryptology relies on the same sources but attempts
to answer different questions: Who are the human actors of crypto-history, what are
their attitudes to the technology they are using, what do they wish to keep as a secret,
and so forth [19].

9. And, finally, further approaches are conceivable and can be exemplified by the
continuously growing number of publications, including studies on personal diaries,
private ciphers, and so forth.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 134 — #38 i
i

i
i

i
i

134 Historical Cryptology

3.7 Conclusion

Historical cryptology is a cross-disciplinary scientific field aiming at the systematic study
of historical encrypted sources: ciphertexts, cipher keys, and related documents. The
aim is not only to shed light on the content behind the encrypted sources by breaking
their code, but also to study the evolution of cryptography and cryptanalysis over time
periods and geographic areas.

As with all scientific disciplines, historical cryptology is in need of research infras-
tructure including resources and tools for the automatic processing of the encrypted
documents. In this chapter, we presented several databases containing smaller or larger
collections of historical ciphertexts and cipher keys, with the largest—at the time of
writing—being the DECODE database [59]. The collections make it possible to study
the evolution of cipher keys over time and to identify the most commonly occurring
cipher types. We presented the structure and the peculiarities of three commonly occur-
ring cipher types in early modern times in Europe: simple, homophonic, and polyphonic
substitution ciphers, all monoalphabetic with or without nomenclatures. Surprisingly,
transposition and polyalphabetic ciphers were used very rarely in Europe in these cen-
turies, even though the cryptographic techniques were known. In contrast, in the U.S.
Civil War from 1861 to 1865 the Vigenère cipher was used by the Confederates [60].

To break the historical ciphertexts, we introduced a set of tools for both transcrip-
tion (to turn the images into a machine-readable text format) and for cryptanalysis (to
decrypt the ciphertext). We presented transcription guidelines for the consistent tran-
scription of symbol sets across ciphertexts and described the challenges and pitfalls
of manual transcription. We then introduced how current handwritten text recogni-
tion techniques developed in computer vision are applied to ease the time-consuming
and expensive transcription process. Given the ciphertext in text format, we described
algorithms for cipher-type identification, cryptanalysis, and decipherment for the most
commonly occurring European historical ciphers. We pointed out the importance of
language models and various heuristics for the generation of cipher keys. Lastly, we
gave an overview of the linguistic and historical interpretation of encrypted sources
and the great challenge of their contextualization.

The latest and rapid development in AI provides us with efficient algorithms and
models. It’s challenging how AI can be efficiently used to produce an error-free and
complete transcription to minimize error propagation to the subsequent step of code-
breaking, to identify the cipher type used for producing a given ciphertext, and even to
get the original message by breaking the cipher. Another future extension could be the
selection and analysis of non-European ciphertexts, especially with languages not using
a Latin-based alphabet.

The field of historical cryptology requires expertise from various scientific disci-
plines in order to collect, describe, transcribe, break, and analyze historical encrypted
manuscripts. Historians contribute to the contextualization and interpretation of the
hidden sources and linguists analyze the historical plaintext by acquiring models for
language variation and language change. Cryptanalysts develop efficient algorithms for
breaking of various cipher types, and image processing specialists provide models to
process images to a machine-readable format. Computational linguists build and eval-
uate historical language models generated from historical texts. By close cooperation a
hidden class of sources, encrypted to hide the content of importance in the past, can be
systematically handled and made available to the public.

The interested reader can find scientific articles on the topic in publication channels
of various disciplines from history, linguistics, natural language processing, and digital

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 135 — #39 i
i

i
i

i
i

3.7 Conclusion 135

humanities to image processing and cryptology. The most well-known scientific pub-
lication sources for historical cryptology are, however, the proceedings of the annual
International Conference on Historical Cryptology (HistoCrypt) [61] and the journal
Cryptologia [62]. The community of historical cryptology has also a network called
HICRYPT that can be reached through the email address hicrypt@ling.su.se.

The work of this chapter was supported by the Swedish Research Council, grant
2018-06074, DECRYPT – Decryption of Historical Manuscripts https://de-crypt.org/.

References

[1] Friedman, W. F. D., and L. Callimahos, “Military Cryptanalytics, Part I,” National Security
Agency, United States Government, Washington, DC, 1959 (available through Aegean Park
Press, Laguna Hills, CA).

[2] Schmeh, K., Revisited: A Terminology for Codes and Nomenclators, 2018, https://
scienceblogs.de/klausis-krypto-kolumne/2018/10/07/revisited-a-terminology-for-codes-and
-nomenclators/.

[3] Mikhalev, V., et al., “What is the Code for the Code? Historical Cryptology Terminol-
ogy,” in Proceedings of the 6th International Conference on Historical Cryptology, 2023,
pp. 130–138, https://ecp.ep.liu.se/index.php/histocrypt/article/view/702.

[4] Aldarrab, N., Kevin Knight, and Beáta Megyesi, The Borg Cipher, https://cl.lingfil.uu.se
/∼bea/borg.

[5] Cipher ID-3816,reproduced image from the Swedish National Archive Riksarkivet 1637,
https://de-crypt.org/decrypt-web/RecordsView/189.

[6] Knight, K., B. Megyesi, and C. Schaefer, “The Copiale Cipher,” invited talk at ACL Work-
shop on Building and Using Comparable Corpora (BUCC), Association for Computational
Linguistics, 2011.

[7] Key ID-345, Reproduced image from the National Archives in Kew, State Papers.
TNA_SP106/2_ElizabethI_f58(0069). 1596. url: https://de-crypt.org/decrypt-web/
RecordsView/345.

[8] Key ID-633, Reproduced image from the National Archives in Hungary, G15
Caps. C. Fasc. 44. 01, DECODE ID 633, 1703–1711, https://de-crypt.org/decrypt-
web/RecordsView/633.

[9] Megyesi, B., et al. “Keys with Nomenclatures in the Early Modern Europe,” Cryptologia,
2022, doi: 10.1080/01611194.2022.2113185.

[10] Lasry, G., et al., “Deciphering ADFGVXMessages from the Eastern Front ofWorldWar I,”
Cryptologia, Vol. 41, No. 2, 2017, pp. 101–136.

[11] Lasry, G., N. Biermann, and S. Tomokiyo, “Deciphering Mary Stuart’s Lost Letters from
1578–1584,” Cryptologia, 2023, doi: 10.1080/01611194.2022.2160677.

[12] Megyesi, B., et al., “Decryption of Historical Manuscripts: The DECRYPT Project,”
Cryptologia, Vol. 44, No. 6, 2020, pp. 545–559, https://doi.org/10.1080/01611194.2020
.1716410.

[13] Megyesi, B., N. Blomqvist, and E. Pettersson, “The DECODE Database: Collection of
Ciphers and Keys,” in Proceedings of the 2nd International Conference on Historical
Cryptology, 2019.

[14] Szigeti, F., and M. Héder, “The TRANSCRIPT Tool for Historical Ciphers by
the DECRYPT Project,” in Proceedings of the 5th International Conference on
Historical Cryptology, 2022, pp. 208–211, https://ecp.ep.liu.se/index.php/histocrypt/
article/view/409/367.

[15] Kopal, N., and B. Esslinger, “New Ciphers and Cryptanalysis Components in CrypTool
2,” in Proceedings of the 5th International Conference on Historical Cryptology, 2022,
pp. 127–136.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 136 — #40 i
i

i
i

i
i

136 Historical Cryptology

[16] Zandbergen, R., The Voynich Manuscript, http://www.voynich.nu/.
[17] Pelling, N., The Cipher Mysteries Blog, www.ciphermysteries.com.
[18] Schmeh, K., Cipherbrain, https://scienceblogs.de/klausis-krypto-kolumne/ (updates on this

website stopped end of 2022).
[19] Láng, B., Real Life Cryptology: Ciphers and Secrets in Early Modern Hungary, Amster-

dam: Atlantis Press, Amsterdam University Press, 2018.
[20] Tomokiyo, S., Cryptiana: Articles on Historical Cryptography, http://cryptiana.web

.fc2.com/code/crypto.htm.
[21] Antal, E., and P. Zajac, “HCPortal Overview,” in Proceedings of the 3rd International

Conference on Historical Cryptology, 2020, pp. 18–20, doi: 10.3384/ecp2020171003,
https://hcportal.eu.

[22] Megyesi, B., “Transcription of Historical Ciphers and Keys,” in Proceedings of the 3rd
International Conference on Historical Cryptology, 2020.

[23] Megyesi, B., and C. Tudor, Transcription of Historical Ciphers and Keys: Guidelines,
version 2.0, https://cl.lingfil.uu.se/∼bea/publ/transcription-guidelines-v2.pdf.

[24] Unicode, The Unicode® Standard Version 12.0–Core Specification, 2019, https://unicode
.org/standard/standard.html.

[25] Lasry, G., “Armand de Bourbon’s Poly-Homophonic Cipher–1649,” in Proceedings
of the 6th International Conference on Historical Cryptology, 2023, pp. 105–112,
https://ecp.ep.liu.se/index.php/histocrypt/article/view/699.

[26] Souibgui, M. A., et al. “DocEnTr: An End-to-End document Image Enhancement Trans-
former,” in 26th International Conference on Pattern Recognition (ICPR), 2022.

[27] Axler, G., and L. Wolf, “Toward a Dataset-Agnostic Word SegmentationMethod,” in 25th
IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 2635–2639.

[28] Frinken, V., and H. Bunke, “Continuous Handwritten Script Recognition,” in Handbook
of Document Image Processing and Recognition (D. Doermann and K. Tombre, eds.),
Springer, 2014, pp. 391–425.

[29] Kang, L., et al., “Pay Attention to What You Read: Non-Recurrent Handwritten Text-Line
Recognition,” Pattern Recognition, Vol. 129, 2022, p. 108766.

[30] Bogacz, B., N. Howe, and H. Mara, “Segmentation Free Spotting of Cuneiform Using
Part Structured Models,” in 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), IEEE, 2016, pp. 301–306.

[31] Baró, A., et al., “Towards a Generic Unsupervised Method for Transcription of Encoded
Manuscripts,” in Proceedings of the 3rd International Conference on Digital Access to
Textual Cultural Heritage, 2019, pp. 73–78.

[32] Souibgui, M. A., et al., “Few Shots Are All You Need: A Progressive Learning Approach
for Low Resource Handwritten Text Recognition,” Pattern Recognition Letters, Vol. 160,
2022, pp. 43–49, https://doi.org/10.1016/j.patrec.2022.06.003.

[33] Souibgui, M. A., et al., “A User Perspective on HTRMethods for the Automatic Transcrip-
tion of Rare Scripts: The Case of Codex Runicus,” Journal on Computing and Cultural
Heritage, 2022.

[34] Kopal, N., “Solving Classical Ciphers with CrypTool 2,” in Proceedings of the 1st
International Conference on Historical Cryptology, 2018, pp. 29–38.

[35] Kopal, N., “Cryptanalysis of Homophonic Substitution Ciphers Using Simulated Anneal-
ing with Fixed Temperature,” in Proceedings of the 2nd International Conference on
Historical Cryptology, 2019, pp. 107–116.

[36] Megyesi, B., et al., “Historical Language Models in Cryptanalysis: Case Studies on English
and German,” in Proceedings of the 6th International Conference on Historical Cryptol-
ogy, 2023, pp. 120–129. url: https://ecp.ep.liu.se/index.php/histocrypt/article/view/701.

[37] Waldispühl, M., “Variation and Change,” in The Cambridge Handbook of Historical
Orthography (M. Condorelli and H. Rutkowska, eds.), Cambridge University Press, 2023,
pp. 245–264.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 137 — #41 i
i

i
i

i
i

3.7 Conclusion 137

[38] Pettersson, E., and B. Megyesi, “The HistCorp Collection of Historical Corpora and
Resources,” in Proceedings of the Digital Humanities in the Nordic Countries 3rd
Conference, March 2018.

[39] Kopal, N., and M. Waldispühl, “Two Encrypted Diplomatic Letters Sent by Jan Chod-
kiewicz to Emperor Maximilian II in 1574–1575,” in Proceedings of the 4th International
Conference on Historical Cryptology, 2021, pp. 80–89, doi: https://doi.org/10.3384
/ecp188409.

[40] Pettersson, E., and B. Megyesi, “Matching Keys and Encrypted Manuscript,” in Pro-
ceedings of the 22nd Nordic Conference on Computational Linguistics, October 2019,
pp. 253–261.

[41] Gambardella, M.-E., B. Megyesi, and E. Pettersson. “Identifying Cleartext in Historical
Ciphers,” in Proceedings of the Workshop on Language Technologies for Historical and
Ancient Languages, LT4HALA 2022, 2022.

[42] Waldispühl, M., and B. Megyesi, “Language Choice in Eighteenth-Century Diplomatic
Ciphers from Europe,” in Languages of Diplomacy in the Eighteenth Century (V. Rjéoutski
and G. Kazakov, eds.), Amsterdam University Press, 2023.

[43] Waldispühl, M., “Verschlüsselte Briefe: Mehrsprachigkeit und Geheimschrift im Schwedis-
chen Reich,” in Praktiken der Mehrsprachigkeit im Schwedischen Reich (1611–1721)
(M. Prinz and D. Stoeva-Holm, eds.), Harrassowitz, 2023.

[44] Kahn, D., “The Future of the Past—Questions in Cryptologic History,” Cryptologia,
Vol. 32, 2008, pp. 56–61.

[45] Mrayati, M., Y. MeerAlam, and M. Hassan at-Tayyan, eds., The Arabic Origins of
Cryptology, Volumes 1–6, KFCRIS & KACST, 2003–2006.

[46] Lasry, G., “Deciphering a Letter from the French Wars of Religion,” in Proceedings of the
5th International Conference on Historical Cryptology, 2022, pp. 147–152.

[47] Braun, G., and S. Lachenicht, eds, Spies, Espionage and Secret Diplomacy in the Early
Modern Period, Kohlhammer, 2021.

[48] Bullard, M.M., “Secrecy, Diplomacy and Language in the Renaissance,” inDasGeheimnis
am Beginn der europäischen Moderne, G. Engel, et al. (eds.), Klostermann, 2002, pp.
77–97.

[49] Desenclos, C., “Unsealing the Secret: Rebuilding the Renaissance French Cryptographic
Sources (1530–1630),” in Proceedings of the 1st International Conference on Historical
Cryptology, 2018, pp. 9–17.

[50] De Leeuw, K., “The Black Chamber in the Dutch Republic During the War of the Spanish
Succession and Its Aftermath, 1707–1715,” The Historical Journal, Vol. 42, No. 1, 1999,
pp. 133–156.

[51] Lasry, G., B. Megyesi, and N. Kopal. “Deciphering Papal Ciphers from the 16th to the
18th Century,” Cryptologia, 2020, pp. 479–540, https://www.tandfonline.com/doi/full
/10.1080/01611194.2020.1755915.

[52] Kopal, N., andM.Waldispühl, “Deciphering Three Diplomatic Letters sent byMaximilian
II in1575,” Cryptologia, Vol. 46, No. 2, 2022, pp. 103–127, doi: 10.1080/01611194
.2020.1858370.

[53] Dinnissen, J., and N. Kopal, “Island Ramanacoil a Bridge too Far. A Dutch Ciphertext
from 1674,” in Proceedings of the 4th International Conference on Historical Cryptology,
2021, pp. 48–57, https://ecp.ep.liu.se/index.php/histocrypt/article/view/156.

[54] Megyesi, B., et al. “Key Design in the Early Modern Era in Europe,” in Proceedings of the
4th International Conference on Historical Cryptology, 2021.

[55] Megyesi, B., et al. “What Was Encoded in Historical Cipher Keys in the Early Modern
Era?” in Proceedings of the 5th International Conference on Historical Cryptology, 2022.

[56] Pelling, N., The Curse of the Voynich: The Secret History of the World’s Most Mysterious
Manuscript; The Intriguing Story of the People, Places, and Politics Behind the Enigmatic
“Voynich Manuscript,” Compelling Press, 2006.

i
i

“Esslinger” — 2023/11/30 — 19:43 — page 138 — #42 i
i

i
i

i
i

138 Historical Cryptology

[57] Kennedy, G., and R. Churchill, The Voynich Manuscript: The Mysterious Code that Has
Defied Interpretation for Centuries, Rochester, VT: Inner Traditions, 2006.

[58] Kruh, L., “A Basic Probe of the Beale Cipher as a Bamboozlement,” Cryptologia, Vol. 6,
No. 4, 1982, pp. 378–382.

[59] DECODE Records, https://de-crypt.org/decrypt-web.
[60] Tomokiyo, S., Confederate Ciphers During the Civil War: Various Vigenère Keywords,

2022, http://cryptiana.web.fc2.com/code/civilwar4.htm.
[61] HistoCrypt–International Conference on Historical Cryptology, https://histocrypt.org/.
[62] Cryptologia, https://www.tandfonline.com/journals/ucry20.

